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Abstract

Compliant Air Foil Bearings (AFB) have fundamental importance in the development of high speed machines
due to low friction and no need of an external lubrication system, leading to a more environmental-friendly design.
Nevertheless, rotors supported by such a type of bearing are more sensitive to unbalance and nonlinear instabilities
due to low level of damping.

The transient nonlinear behaviour of rotors supported by AFBs demands the solution of the Reynolds equation
for compressible fluid coupled to the compliance of top/bump foil surfaces and the friction between parts of this
complex flexible structure. The nonlinear transient simulation of rotors interacting with AFB is still a challenge and
a very time-consuming task. In the particular case of assuming the variation of pressure in time dp/dt negligible,
time simulations for predicting rotor-bearing transient behaviour can be carried out relatively safely and without
numerical instability problems. Nevertheless, a precise and correct way of dealing with the nonlinear problem
is taking into consideration the variation of pressure in time, i.e. dp/dt. In this framework, this paper gives an
original contribution by implementing a method, as proposed in the literature, in which the variation of pressure
in time dp/dt is included as part of the state space variable domain. It is extended to simulate the transient and
nonlinear behaviour of an industrial AFB, built by three independent segments and coupled to a rigid rotor as used
in a Siemens compressor. An efficient finite element model previously developed, is used for the discretisation of
the pressure field and foil compliant structure.

The theoretical results are validated against the literature and the importance of the term dp/dt is carefully
elucidated. A parameter study with focus on the transient nonlinear behavior of the rotor-bearing system is carried
out and the efficiency of the method presented is discussed, highlighting advantages and drawbacks.

Nomenclature
O Time derivative, 6{% he, h:c Film height correction, he = he/C
) Time derivative, 6% hy, b, Film height (rigid), h, = h,./C
()" Approximating field hs,hs Slope height, hy = h,/C .
A, B Bearings k,k  Structural stiffness per unit area, k = ka:
C Radial clearance Ly Distance to Bearing A
E  Modulus of elasticity of foil ly Distance to Bearing B
L,L Bearing length, L = L/R p,p  Film pressure, p = p/p,
N, Number of pads Da Ambient pressure
R Journal radius ty Thickness of bump foil
S Bearing number, S = 6;‘—‘” (%)2 te Thickness of top foil
S¢ Element surface ‘ U Unbalance kg-m
Sy Bump foil pitch x,y,z Cartesian coordinates
V Volume CG Center of gravity
w Static load n Structural loss factor of foils
b, b Structural damping per unit area, b = pacw b iz Dynamic viscosity
e, € Journal eccentricity components, ¢ = e/C' V- Divergence
- - : 8 9
h,hi  Film height, i = h/C V. Gradient, V= {5, 5
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v Poisson’s ratio of jfoil {W},{W} Load vector, {W} = ﬁ{W}

w Angular speed of journal {¢}  Film state vector

P Film state variable {n}  Unit normal vector

0 Circumferential angle {h¢}  Foil deformation vector

0, First pad leading edge angle {h} Height vector

0 First pad slope extend {p} Pressure vector

0y First pad trailing edge angle _ {e} Eccentricity vector

0 Circumferential coordinate, 0 = R {y} State vector

&,n  Gauss points {#z1}, {22} Rotor state vectors

t, T Time, 7 = wt [A] Fluidity matrix

{Fup}: {Fu} Unbalance force vector, B]  Shape function derivatives matrix
{Fu} = ﬁ{Fub} G|, |G] Gyroscopic matrix

[
) _ &), 1G]
{F},{F} Bearing force vector, { F'} = ﬁ{F} [M], [M] Mass mat.rix .
{R}  Residual vector [N] Shape function matrix
{S}  Advection vector, {S} = {S, 0}T

1 Introduction

Gas bearings have been intensively investigated, theoretically as well as experimentally, for over five decades
[3, 20, 21] although some initial publications are dated already from the beginning of last century [7]. In order to
deal with time consuming rotor-bearing dynamic analysis in time domain, linear damping and stiffness coefficients
were introduced to predict rotor-bearing stability [16]. The rapid development of computer science and increasing
computer power, later enabled the solution of the mathematical models in time, and allowed for the inclusion
of gas compressibility and foil compliance in the models. Although almost a century has passed since the first
publications about gas bearings, the accurate time simulation of gas bearings with compliant surfaces is still a
challenging and very time consuming task.

Prior to the presented work, different approaches for solving the compressible Reynolds equation has been in-
vestigated. Among others Wang and Chen [22] who used finite difference for the spatial and temporal dimensions
when solving the Reynolds equation. They simulated the steady-state response of a perfectly balanced rigid rotor
supported by two identical bearings. The spatial discretisation was performed with a central-difference scheme,
while the temporal discretisation was performed with an implicit-backward-difference scheme. Furthermore, Suc-
cessive Over Relaxation (SOR) was used in order to reduce the number of unknowns in the iteration step. Their
solution took advantages of the bearings being rigid, hence only the rotor movement contributed to dh/dt. This
made an explicit solution of the transient compressible Reynolds equation possible since a movement of the rotor
resulted in a change in the gap and then a change in pressure, which then again affected the rotor.

Arghir et al. [2] presented a finite volume solution, where the pressure was implicitly integrated for a prescribed
gap perturbation to calculate linear stiffness and damping coefficients dependent on the perturbation amplitude. In
the procedure, the rotor was stationary in one direction, while the other was perturbed by a sinusoidal displacement
Asin (wt). At each time step, the reaction forces from the air film was calculated, including dp/dt, and based on
the displacement/velocity and reaction force pairs, the least square method was used to calculate the linear stiffness
and damping for a given amplitude A. This allowed a linear analysis of a rotor system to take into account the
nonlinearities related to the vibration amplitude of the rotor in the air bearings. This method works well for
calculating the linear coefficients in a bearing with gap discontinuities e.g. thrust bearing.

Song and Daejong [19] calculated the time dependent pressure in the next time step by explicit time integration,
but by utilising the present and previous time step values for the gap size. As stated in the paper, this was done
to reduce the computational time spend in each time step, but this also required very small time steps in order to
minimize the error introduced when dp/dt and dh/dt are taken from different time steps. Le Lez et al. [14] used
a similar method to [19]. This method was also used in [23] to solve the transient Reynolds equation, but with
four-node planar finite elements for the spatial discretisation of the Reynolds equation and for a rigid gas journal
bearing. Lee ef al. [15] also used a four-node finite element to solve the compressible Reynolds equation in time
and space and a backward-difference iterative procedure to solve the pressure in time. This solution was used in
conjunction with a finite element model of the bump foil, affected by coulomb friction at the bump foils contact
points, to investigate the performance of a rigid rotor symmetrically supported by two bearings under different
bearing configurations.

More recently Bonello and Pham [4, 18] solved the nonlinear Reynolds equation by using an alternative state
variable 1) = ph. Using this alternative state variable, it was possible to solve the Reynolds equation explicitly with
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(a) Shaft and bearings. (b) Detailed view of bearing geometry.
Figure 1: Schematics and nomenclature of a rigid rotor supported by foil journal bearings.

d(ph)/dt calculated in the same time step. For spatial discretisation, a finite difference and Galerkin Reduction
method were used. The solution for the transient compressible Reynolds equation was then coupled to the simple
elastic foundation model, and the transient response of a rotor system was presented.

This paper is a continuation of the work done by the authors reported in [12], where the compressible Reynolds
equation is solved for an equilibrium position and a perturbation method is used to obtain the linear stiffness and
damping coefficients and perform rotor-bearing dynamic analyses. In this framework, this paper gives an original
contribution to the time simulation of a rigid rotor supported by a set of industrial foil bearings. Bonello and
Phams approach is used to properly solve the coupled equations of motion related to the time-dependent fluid
film pressure and the rotor lateral movements. Instead of finite differences and Galerkin Reduction methods, the
finite element method is used to evaluate the compressible Reynolds equation in time. The theoretical results are
validated against the literature and the importance of the term dp/dt is carefully elucidated. A parameter study
with focus on the transient nonlinear behaviour of the rotor-bearing system is carried out, and the efficiency of the
method presented is discussed, highlighting advantages and drawbacks.

2 Mathematical model

In Fig. 1, the schematics of the rotor-bearing system is illustrated. With the nodal vector defined as {¢} =
{eax, € Ays EBzy € By}T describing the instantaneous position of the shaft in the bearing locations A and B, and
under the assumption; that the shaft is rigid and subjected to small rotations around x- and y-axis, its equations of
motion can be written in dimensionless form as

[M]{e} = [GHeY = {W) —{F} + {Fu}. ey

Here, the dimensionless mass and gyroscopic matrices, [M] and [G], are given in Appendix A, together with the

- - ) ~ T ~ T o~ T .
mass unbalance vector {Fy;}. Furthermore, {W} is the static load vector and {F} = {{Fa} , {Fg} }T is
the reaction force vector stemming from the bearings. It is composed by the reactions from the bearings A and B,
which are determined by integration of the fluid film pressure for each particular bearing as

. [ L 2w cos
{F} = {ff} :/0 /O (;31){Sm((z))}d9dz. )
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The bearing pressures can be obtained by solving the Reynolds equation for compressible fluids for each bearing.
This can be written dimensionless in vector form [6] as

v (ﬁiLBV;ﬁ) —v. (ﬁﬁ) (S} + 258% (;5}3) 3)

where the film height is defined as

hews ey, Py he) = hp(Easy) + he(Py he) 4)

and h,.(c,,€,) is the undeformed rigid height which depends of the rotor eccentricity and h.(p, h.) is a pressure
dependent deformation in the foils referred to as the compliant height. For a bearing with the geometry as illustrated
in Figure 1b and under the assumption of simple elastic foundation model [8, 9], expressions for these heights are
given in Appendix B.

2.1 Solution strategy

The equations (1) through (4) constitutes the mathematical model for the rotor-bearing system. In order to
simulate the nonlinear rotor response, a commonly used strategy is to rewrite (1) to a system of ODEs to be
integrated while the bearing forces {F } are updated at each time step. The bearing forces relates to the pressure,
through (2), which is then obtained by solving (3). This can be accomplished by discretising the film PDE and
substituting the time dependent terms by backward difference approximations as;

ot {Ptn —{Ptn1  O{h} _ {A}n —{h}n 5)

or AT ’ or AT ’
where n is the current time-step. The pressure can then be found by iteratively solving a set of nonlinear algebraic
equations. Following the above described strategy, the time dependent terms are lagging behind in time since they
are based on the previous time-step in the integration of the rotor ODEs. As pointed out by Bonello and Pham
[4, 18], this method does not preserve the true simultaneously coupled nature of the state variables, ¢, p, izc, of the
system. This means that very small time-steps are necessary in order to insure an accurate solution. It makes the
solution slow, and being strictly rigorous, each simulation should be accompanied by a convergence study on the
time-step size to ensure an accurate solution.

Another problem with the above described solution strategy is the numerical stability. This is particularly
related to the term O{p} /07 which tends to become dominant and sensitive to the accuracy of {p},, — {p}n—_1 due
to the division by the very small number A7. Assuming the term negligible is no option, simulations performed
by Olsen [17] clearly showed that discarding this term leads to significant errors.

Bonello and Pham [4, 18] introduced a basic strategy to solve for all the state variables simultaneously and
an efficient solution method based on a Gallerkin Reduction method to significantly limit the number of state-
variables. Here, only the basic strategy is followed, which implies setting up one coupled system of nonlinear
ODE:s of the state variables ¢, ¥, he, where Y= 13/~1.

2.2 Reynolds equation - discretisation
We discretise the PDE (3) using a standard Bubnov-Galerkin FE procedure with implementation of an isopara-
metric element formulation [5]. Firstly we perform a partial substitution with v to obtain

o _

or 0 ©

V- (ﬁBSVﬁ) ~v. (ﬁh) (S} 25

secondly, approximating fields p* = [N] {p°} and Y* = [N] {4} over the elements are introduced, where {p°} is
the nodal pressures, {1)°} is the nodal film state variable and [N] is the shape function matrix. Thus the Galerkin
residual equation for (6), on the element level, is

/ V" V- (ﬁ*ﬁ3v;3*)dv-/ IN" V- (15*71) {S}dV—2S/ (N7 gV = {0} )
. e
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where V¢ is the element volume. Applying Greens theorem on (7) yields

*/e 1B)" (;5*?13V;3*)dv+/ve )" (5h) {S}deQS/Ve (N7 v

®)
+ [T (5595 ) fm)as - /S (V)" (°F) {SHm)dS = {0)

where matrix [B]” = [[N 07, [, g]T] contains the spatial derivatives of the shape functions and {n} is the

outward pointing unit normal vector of surface element dS. Due to continuity conditions, the boundary integrals
vanishes and (8) reduces to

—/e B]” (15*}33v13*)dv+/ve B]" (ﬁ*ﬁ) {syav—2s | IN]T §*dv = {0}. )

The spatial derivatives of the approximating pressure field are p*,; = [N,;] {p°} with ¢ = 6, Z or in vector form,
V{p*} = [B] {p°}. Inserting this into (9) gives

[A] {4} = {R°} (10)

where

(4] =25 [ [N]"[N]av

o ) (11)
(ry=- [ BT FREav) - [ BT (SN ()

Ve Ve

The element vectors and matrices are expanded to structure size by the usual element summation:
(R} =) _{R}y; {p}=)_ 1} {¥}=>_{¥} (12)

where the volume integrals are numerically integrated using a quadrature rule [5]. The scalar field quantities p*,

h, are calculated in the respective Gauss points (&;,7;) by use of the interpolation functions as:

q(&imy) = [N (& my)]{a"} (13)

where ¢ and {¢°} are the scalar field quantities and nodal vectors respectively. Note that the right hand side of (10)
is denoted { R°}. In fact, { R°} is the residual that needs to be minimized in order to find the static equilibrium of
the journal. When performing certain simulations in the time domain, it is very handy to start the simulations from
this static equilibrium position. An efficient method for minimizing { R°} is given in [12].

2.3 Coupled system of ODEs
With the film PDE discretised, a system of ODEs of the form {y} = (7, {y}) can be set up, and solved for all
state variables simultaneously. The state-vector is defined as

)" = ", {ws}"s {hea}”, {hes}”, {21}7, {z2}T}7 (14)

The right hand side f consists of three different equations. For each of the bearings A, B the film state is calculated
by:

{¢} = [A] " {R}. (15)

5 Paper-1D 39



Vectorizing the pad deflection given in (26), the pad deflection for each of the bearings A, B is calculated by:
+ {p}—-1 ~ > 1
het = ———— —{h.} | = (16)
hy = (=2 - ) |

and finally, the rotor state variables {z1} = {¢} and {22} = {¢} are calculated by:

g _ o 1] =y T U S
{{,2'2}} LO} ilE {{22}}+{[M] ({W}—{F}+{Fub})}' "

In this work, the system of ODEs are solved using the ’Isoda’ solver from the Fortran library ODEPACK [10]. This
solver has an automatic time-step control and switches between dedicated solvers for stiff and non-stiff systems.
To efficiently solve the ODEs, a program for the discretisation and solution of (15) is implemented in C using the
sparse solver DGBESV from the LaPack library [1]. However, the solution is still time consuming, and it should
be highlighted, that Bonello and Pham [4, 18] significantly improved the solution efficiency by implementing a
Galerkin reduction method.

2.4 Boundary conditions
In dimensionless form, the edge boundary conditions for the bearings, as depicted in Fig. 1b, are:

p(01,2) = (6, 2) =1

p(0,L/2) = p(0,—L/2) = 1. (18)

To obey these conditions, it is necessary to evaluate the film state variable 1/1 = ph + ﬁp. On the pad edges, we
know that p = 1 and is constant so p = 0. This means, that when solving (15) to obtain the film state variable, the
following boundary conditions must be imposed:

V(0 2) = (01, 2) = hlég, £y he)

L . . B (19)

which is achieved by using standard FE procedure. Symmetry conditions can be achieved by neglecting (19) on
one side, e.g. on (0, L /2). In this case, the reaction forces needs to be multiplied by two. A commonly used
boundary condition [12], which is also used in this work, is to assume that the bearing foils deforms evenly over
the length L of the bearing. This condition is implemented by replacing {p} in (16) by {p},, where {p}, is the
arithmetic mean pressure over the length L.

In gas bearings, significant sub-ambient pressures may arise. These sub-ambient pressures can cause the top
foil to separate from the bumps into a position in which the pressure on both sides of the pad are equalized.
Heshmat [9] introduced a set of boundary conditions accounting for this separation effect. However, in this work,
a simple Giimbel [6] boundary condition is imposed, which means that sub-ambient pressures are discarded when
integrating the pressure (2) to obtain the bearing force components (W, W, ), essentially leaving the sub-ambient
regions ineffective.

3 Results

As mentioned, the integration of (1) using a decoupled solution strategy, in which the time dependent terms of
the Reynolds equation are approximated by backward difference approximations, can lead to numerical instability
[17]. This problem is specifically related to the term dp/dt, hence it is interesting to investigate the significance of
this term, in order to determine if it can be neglected in the simulations of the nonlinear rotor response.
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Table 1: Geometry, material properties and operating conditions of a single pad foil bearing.

Parameters Values Parameters Values
Bearing radius, R 19.05 mm  Young’s modulus of bump foil, £/ 2.07 x 10! Pa
Bearing length, L 38.10 mm Poisson’s ratio of bump foil, v 0.3
Bearing clearance, C' 32 um  Loss factor, 7 0.25
Bump foil thickness, ¢, 0.1016 mm  Ambient pressure, P, 1 x 10° Pa
Top foil thickness, ¢; 0.2032 mm  Air viscosity, (& 1.95 x 10~° Pa-s
Bump foil pitch, S, 4.572mm Load, (W,, W,) (30,0) N
Bump half length, [ 1.778 mm  Speed, w 12,000 RPM

Table 2: Geometry, material properties and operating conditions of the Siemens foil bearing test-rig

Parameters Values Parameters Values
Bearing radius, R 33.50 mm  Bump foil height, h 0.9 mm
Bearing length, L 53.00 mm  Young’s modulus of bump foil, & 2.07 x 10! Pa
Bearing radial clearance, C' 40 pm  Poisson’s ratio of bump foil, v 0.3
Number of pads, IV, 3 Foil friction coefficient, i s 0.2
First pad leading edge, 6; 30deg Ambient pressure, p, 1 x 10° Pa
First pad trailing edge, 6; 145deg  Air viscosity, 1 1.95 x 107° Pa-s
Slope extend, 0 30deg [y 201.1 mm
Slope, h 50 um o 197.9 mm
Bump foil thickness, ¢, 0.127mm m =m, = m, 21.1166 kg
Top foil thickness, #; 0.254mm I, =1, 525.166 - 102 kgm?
Bump foil pitch, Sy 7.00mm I, 30.079 - 103 kgm?
Bump foil half length, 3.30 mm

3.1 Significance of dp/dt

To investigate the significance of the term dp/dt, a well known bearing geometry from the literature is sim-
ulated. Only a single bearing and a journal with two degrees of freedom are considered. The bearing geometry
and operation conditions are listed in Tab. 1. The simulation is started at constant speed with the initial conditions
{e} = {¢} = {0}, which in physical terms, corresponds to dropping the rotor from the center of the bearing. The
result of this simulation is illustrated in Fig. 2. It is clear, that the two different solution strategies yields different
results. Both yield the same equilibrium positions, but their transient trajectories toward this are different. Judging
from the transient orbits, the journal-bearing system is less damped when including the term dp/dt. From Fig. 2,
it is also seen that the calculations including the term dp/dt yields good agreement with similar results obtained
by Pham and Bonello [4, 18]. The lower part of the trajectories coincide very well, but a slight discrepancy in the
upper part is observed. This discrepancy could be due to different boundary conditions. For instance, a periodic
boundary condition in the top of the bearing would cause the journal to lift higher on its way up, as found by Pham
and Bonello [18].

3.2 Coupled rotor-bearing system

The rigid rotor-bearing system investigated in this paper (Fig. 1) is that of a test-rig designed for the identifica-
tion of the linear bearing coefficients [11]. All parameters, operating conditions and dimensions are listed in Tab. 2.
The authors wish to highlight, and reproduce by simulation, a phenomenon commonly seen when performing fac-
tory approval tests of compressors supported by AFBs. Specifically, the ’destabilizing effect’ of rotor unbalance.
First a perfectly balanced rotor, {F,,} = {0}, is simulated at a variety of rotor speeds when dropped from the
bearing centre i.e. {e¢} = {¢} = {0}. For these simulations, a foil stiffness of ¥ = 9.26 GN/m?3 is used which is
based on a structural finite element calculation of the foils [13] under the assumption of 1 = 0.2. At 30,000 RPM,
the system is clearly unstable as illustrated in Fig. 3. At approximately 24,000 RPM, the system is marginally
stable, and at 20,000 RPM the system is stable and quickly approaching its static equilibrium position as illus-
trated in Fig. 4. With the knowledge, that the perfectly balanced rotor-bearing system is stable at 20,000 RPM, a
simulation with a different amount of unbalance applied is then performed. In Fig. 5, the orbit for bearing A and
the associated frequency spectra for the two directions is illustrated with a rotor unbalance of 20 g - mm applied
in each bearing 180 deg. out of phase. It is clear that the rotor-bearing system is still stable, moving in an almost
circular orbit with the rotor running frequency (333 Hz).

Increasing the unbalance in each bearing to 40 g - mm, an increase in the synchronous vibration components is
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Figure 2: (a) Journal response when dropped from the bearing centre. The dashed line indicates the undeformed
foil shape. (b) Deformed and undeformed foil shape at the static equilibrium. (c) and (d) Journal response results
and foil deflection extracted from Pham and Bonello [4, 18].

observed, as illustrated in Fig. 6. Not unexpectedly, the synchronous vibrations amplitude grows to approximately
twice the size, compared to the previous simulation, which had half the mass unbalance. What is less expected
is the fact, that the rotor is now tracing a quasi-periodic orbit and as seen in the associated spectra, four sub-
synchronous vibrations appears. With two of them having significant amplitudes at approximately 150 Hz and
195 Hz. Dependent on the general rotor and bearing geometry and the running conditions, these sub-synchronous
vibrations can appear with very high amplitudes that can lead to bearing failures. In the simulated example the
rotor unbalances are between ISO G2.5 and ISO G16 which are high unbalance levels for a rotor supported by
foil bearings. A well designed rotor on foil bearings might be stable and trace an almost circular orbit, when the
level of unbalance is within a safe range, usually ISO G2.5, but as shown, unstable when outside. Therefore, rotor
balancing should be given great attention when mass-producing turbo machinery supported by AFBs.
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Figure 3: Journal response when dropped from the centre. (a) Bearing A. (b) Bearing B. w = 30,000 RPM.
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Figure 4: Journal response when dropped from the centre. (a) Bearing A. (b) Bearing B. w = 20,000 RPM.

4 Conclusion

A method [4, 18] for simulating the rotor response of a rigid rotor supported by AFBs were implemented and
validated. The method, which solves for all state variables simultaneously, was compared to calculations in which
the time dependent term dp/dt was neglected. The comparison clearly showed that neglecting dp/dt will lead to
significant errors, and overestimation of the damping in the bearings.

The influence of rotor mass unbalance, on a rigid shaft supported by two identical AFBs, were investigated as
well. This investigation highlighted the importance of balancing turbo machines to a high grade as unbalance can
cause sub-synchronous vibrations to occur that can lead to bearing failures.
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Figure 5: Journal steady state unbalance response after 1.5 s. (a) Bearing A. (b) Bearing B. w = 20,000 RPM.
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Figure 6: Journal steady state unbalance response after 1.5 s. (a) Bearing A. (b) Bearing B. w = 20,000 RPM.

A Rotor model matrices

The mass and gyroscopic matrices for a rigid rotor can be written as:

Bmg + Iy 0 lilom, — I, 0 0 —I. 0 I,

1 0 Bmy + L, 0 Lilymy, — Ly 1|, 0 —-I., 0
(M) =7 lLilomg — Iy, 0 Bmg + I, 0 CGl=5 L. 0 —I,
0 Lilgmy — Ly 0 Bmy + Ly ~I.., 0 I. 0

10

z

(20)
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The non-dimensional form of the mass and gyroscopic matrices and the mass unbalance vector are:

waw? | €OS(T)

~ w?C ~ w?C . PaR? ) si

Gl= (6l W= 2 Ml (B} =" o) @
palt® ] sin(T)

B Film height
For a segmented journal bearing, with inlet slope and the nomenclature as illustrated in Fig. 1b, the dimension-
less rigid film height can be written as:

o 1+ e, cos(0) + €, sin(0) — hg 95501', 0, <0<09,; 22)
" |14 e, cos(d) 4 &, sin(h), 0; <6 <0y
where
2r .
92‘ :934-9[4-?[)(2—1)
0 =0, + 2LT( 1) 23
=0t 3 i (23)
2r
9“ = ‘9t+ E(Z— 1)
Discarding the mass of the foil structure, the equation of motion for the foil structure is:
T
p—1=Fkhe+bhe or he(p,he)= pT (24)
Introducing the mechanical loss factor
bwg b w,
= T T (25)
Inserting the loss factor into the foil equation of motion yields the first order ordinary differential equation:
< p— =\ 1
he = (p — - h) = (26)
k Ui

with w, /w = 1 meaning the the vibrations in the foil are assumed synchronous.
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