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Abstract

The correct capture and understanding of the bearing imbreter vibrations is nowadays a rather compul-
sory task, which should accompany the modeling and sinaunatiork flow of high-speed rotor systems, such as
turbochargers. The oil-film concentrated in the rotor'srj@l bearings is the root cause of the systems occurring
non-linear effects known as sub-synchronous vibratiamghis paper the virtual prototype process of turbocharger
rotors with full-floating bearings is presented, which is\docted based on data mining, sensitivity analysis and
non-supervised neural network methods for three levela@tystem’s assembly: the wheel-shaft-bearing center
of masses distribution, the bearing-shaft geometry andvtiieel unbalance levels. The impact of each design
parameter on the system’s stability is verified by quamiyiheir influence upon the sub-synchronous evolution
and the inner and outer oil-film load capacity. On this acta@sign configurations are indicated that could be set
as a compromise in terms of feasibility and low-cost proiunct

1 Introduction

The turbocharger rotor-bearing model with oil-film ring begs is defined as an assembly of rigid and flex-
ible bodies, which interact with each other due to the presenf joints and force elements (Fig. 1). The mo-
tion equations of such constrained mechanical multi bodyesys [26, 27] are given by second order, index-
Differential-Algebraic Equations (DAE) [2, 1, 4, 8]:

M(q)d(t) = h(q,q,t) — GT(q,t)A 1)
0 =g(q,t). ()

Here,q” € R"*!,n € N* represents the set of generalized coordind¥és; R"*" the symmetric mass matrix
andh(q,q,t) € R™*! the vector containing all applied and velocity dependesttia forces. The generalized
constraint forces-G”(q, t)A € R™"*! are defined by the associated Jacobian m&rix= (9g/dq)(q,t) and the
Lagrange multipliers\ € R"< satisfying the existing.. constraints. While the wheels and journal bearings are
modeled as rigid bodies including the associated unbalefieets (Fig. 1), the shaft is introduced as a flexible
body, which is FE-discretized and incorporated in (1)-@paComponent-Mode-Synthesis reduced order model
[7, 6,15, 16, 17, 3].

The root cause of the sub-synchronous vibrations -also kraswil-whirl/whip- is the oil-film concentrated in
the rotor journal bearings, which in case of turbochargtrsowith full-floating ring bearings drives the system to
exhibit the following basic sub-synchronous response23324, 5, 9, 29, 25]:

1. 1st sub-synchronous (Subwith the oil whirl/whip of the inner oil film exciting the gyscopic conical for-
ward mode,

2. 2nd sub-synchronous (Sgwith the oil whirl/whip of the inner oil film exciting the gwscopic cylindrical
forward mode,

3. 3rd sub-synchronous (Sglpwith the oil whirl/whip of the outer oil film exciting the ggscopic conical for-
ward mode.
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Figure 1: Turbocharher rotordynamics - modeling procedure

The aforementioned oil-whirl/whip effects are capturedsbiving the Reynolds equation [28, 5, 3, 24] for both
the inner and outer film, which in the framework of the curnentk undergo the restrictions quoted in Fig. 1. The
calculated fluid film forces along with the friction torque® ancorporated into (1)-(2) for conducting the rotor
dynamic simulations. The rotor is driven by a prescribediomapplied at the turbine wheel center of mass (Fig.
1).

The turbocharger run-up virtual prototype process preskwithin the framework of this paper is applied for
three levels of the system’s assembly: the wheel-shaftiigpaenter of masses design, the bearing-shaft geometry
and the wheel unbalance levels. Each assembly level uneiesgparately a variation study with which design
parameters are identified and assessed according to thgaciron the sub-synchronous evolution and the inner
and outer oil-film load capacity. All above is conducted farexample rotor system with its’ basic configuration

Table 1: Virtual prototype process - basic rotor assembly infororat

Design information of rotor assembly  Approximate vakag( Unit

Total rotor assembly mass 70 [a]
Total rotor assembly length 100 [mm]
Bearing ring inner & outer diameter 6 & 9.5 [mm]
Bearing ring inner & outer width 35&6 [mm]
Reference bearing shaft diamefer 6 [mm]
Dynamic oil viscosity aR0°C 0.16 [Ns/m?]

being given in Table 1. It copes with a small-sized high-sgipieebocharger rotor with full-floating ring bearings,
which operates under high oil-supply temperaturg®){C). The size as well as the maximum operating speed
(3 - 105 RPM) indicates for the aforementioned vibration effectsit{S& Subs) not to be avoidable. While Sub
could be listed under comfort-issue problems, Swiih extended amplitudes might lead to rotor destruction.

It should be mentioned that the results presented in thisre valid only for the investigated turbocharger
rotor, i. e. generalizations are not advisable.
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2 Turbocharger run-up virtual prototype process
2.1 First assembly level: wheel-shaft-bearing center of nss design

The first assembly level considers the system'’s basic dgggmetry based on center of mass distribution of
all the system’s rigid bodies as given in Fig. 2. The distareteveen the center of massesg (compressor wheel

Figure 2: First assembly level [18]

to compressor side bearind)g (compressor side to turbine side bearing) &ag; (turbine side bearing to turbine
wheel) depicted in Fig. 2 are set as independent parameteesvariation study, which is defined in terms of a
Design of Experiment (DoE) [20]. Additionally, the diamefe of the shaft-part located between the two bearings
(Fig. 2) is set as an extra DoE-parameter. Herewith, variotss assemblies are generated, all of which have both
different shaft diameter and total length. This implied the flexible shaft modeling process described in Section
1 and Fig. 1 should be repeated according to the associatezhdion of the DoE (in this ca®® configurations
were computed).

Itis worth mentioning that the methodology applied is natrieted on how to vary the investigated parameters.
Here, it is conducted by means of a DoE, but the applicatiomativariate analysis algorithms for defining the
parameter space with the help of sampling methods, e.g.omntflonte Carlo, Latin Hypercube, etc., is not
excluded [11, 19].
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Figure 3: First assembly level - Sensitivity analysis [18]

The importance of each parameter upon the global set of mesgpi. e. sub-synchronous vibrations and
inner/outer oil-film capacity, is assessed by applying gresgivity analysis algorithm (Appendix A.1). The shaft
diameterD is quantified as being the most influential input varia3{). On the other hand, the role &fr 3 is
subordinate (0%), wheread.c 5 and L i are rated as equally importar26(s and25%, respectively).

Amongst other methods, response surface methodology (1,22 23] delivers an insight on the positive or
negative influence of each parameter on the designatednsspace. In this regard Fig. 4 combined with the
global sensitivity information reveals the possibilitigsimproved designs with respect to Sulsuly, and Sub,
but also depict the controversial effect a single paranetarhave on several sub-synchronous responses (e.g. a
large shaft diameter affects positively the $ytbut negatively the associated Stamplitude, etc.). This means
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the best suitable compromise should be found, which in cefee@xamined rotor would be a decreasdoind
Lep and anincrease dfg. Ly has a minor impact on the system’s responses (Fig. 3), tivergfshould remain
unchanged.

Subl_Amp_Rel
9

o
=4

Figure 4: First assembly level - Response surface methodology ®6tih 5 5 relative amplitudes - Normalized

Data [18]

2.2 Second assembly level: shaft-bearing dimension design

The second assembly level copes with the detailed infoonatith respect to the shaft and bearing design [18],
which is directly set as an input for the Reynolds equatiotubfication in the inner and outer oil-film bearing
[28, 5, 3, 24] under the restrictions quoted in Fig. 1. On #dsount, the parameters selected for this specific
DoE study of45 configurations are given in Table 2. Both the inner and ouéaring diameter are primarily
not introduced as design parameters due to often occurdokgging restrictions, although their correlation with
hydrodynamic friction [19], bearing speed ratio and thus)Sninimization is well known.

Table 2 Assembly level two: shaft-bearing dimension design

Parameter Description

D, and D, CSB and TSB shaft diameter

CSBy, andCSBy, & CSBw,, CSBw, CSB innerand outer clearance & CSB inner and outer width
TSBy, andT'SBy, & TSBw,, TSBw, TSB innerand outer clearance & TSB inner and outer width
Tsup Oil-supply temperature witif;ﬁ;'," =90°C & Tg,;" =150°C

CSB: Compressor-Side-Bearing & TSB: Turbine-Side-Bearing

The sensitivity analysis results for the second assembady &#e depicted in Fig. 5. Almog0% of the system’s
response is controlled by the design of the outer clearaiiég®,,, & 7'SB,;,). The application of smaller outer
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clearances for Suybvibrations is an experience-based solution, which in taem&work of the current analysis is
in addition quantified.

The bearings’ outer width is further listed as importantdag, which along with the outer clearances contribute
in influencing over55% of the system’s response. An enlargement of the bearing eutith although Subp-
beneficial, it acts contra-productive w.r.t. to constametg@roblems (Suf) as seen in Fig. 6. The oil-supply
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Figure 5: Second assembly level - Sensitivity analysis [18]

temperaturel,, is ranked as the fourth most important parameter. Sincetbme¢harger rotor has to perform
equally well under cold and warm conditions, the presengsdlts are extended by applying the Self Organizing
Maps (SOM) methodology [13, 14, 18] (Appendix A.2) in orderaiccount for feasible rotor-assembly designs
that would hold on to the temperature prerequisites. Onabtisunt a Subbest case scenario (elliptical selected
cells in Fig. 6) and a compromise Suhs scenario (rectangular selected cells in Fig. 6) is proposed
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Figure 6: SOM analysis: Supbest case scenario (elliptical selected cells) & comprer8ish » 3 scenario (rect-

angular selected cells) - Normalized responses [18]
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Table 3: Assembly level two - Improved design based on the referenoéiguration of Table 1 [18]

Assembly level two . . . . .
Best Sub configuration Compromise Sub 3 configuration
Parameter

D1 & D> N & = N & =
CSBy, & TSBy, &N - & =

CSBy, & TSBy, =& = =& /

CSBw, & TSBw, & N S & N

CSBw, & TSBw, =&\, &N

"N, " " and "=" indicate parameters with dimension smaller, larger and equal than theiassl

parameter of the reference configuration rotor-assembly, regglgcti

2.3 Third assembly level: wheel unbalance dimension design

The third and final assembly level takes into consideratierunbalance information introduced into the system
(Fig. 1) after having completed the previous two assembilgllsteps. Herewith, the recommended bearing
design undergoes a robustness test coping for the uncee@iife unbalance configurations. It is conducted
by accounting for several feasible unbalance magnitudepaiade configurations for the four unbalance planes
(left-hand side of Fig 7).

Apart form the standardized force and rotor coupling coméjans, the rest oi° and180° phase configura-
tions per unbalance plane are tested for sub-synchronbustreess. It an important task, since the rotor-bearing
systems behaves highly non linear under different unbalahase configurations. On this account, it is shown
(Fig. 7) that the first and last unbalance levels result ifirftathe greatest sensitivity with respect to the harmful
Sub; response, i.e. Sykmagnitude and duration, respectively.

Sensitivity Analysis
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Figure 7: Left: unbalance planes - Right: sensitivity analysis far tinbalance phase of each plane upon thg Sub

evolution, i.e. Sup-magnitude and -duration

On the basis of the aforementioned, the three level assepnbbess along with the noted bearing diameter
effects [19] leads to the generation of a compromise modeakiwcompared to the reference configuration shows
better controlled sub-synchronous responses (Fig. 8).cdhgarison is conducted by means of the radial dis-
placement of the compressor’s wheel center of mass (Fig) as Well as the frequency decomposition of this
signal.
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3 Conclusion

In this paper the virtual prototype process of turbochargers with full-floating bearings is presented, which
is conducted based on data mining, sensitivity analysisianesupervised neural network methods for three levels
of the systems assembly: the wheel-shaft-bearing centaas$es distribution, the bearing-shaft geometry and the
wheel unbalance levels. The impact of each design paramettre systems stability is verified by quantifying
their influence upon the sub-synchronous evolution. Adddilly, the recommended bearing design undergoes a
robustness test coping for the uncertain real-life untwaonfigurations. It is conducted by accounting for several
feasible unbalance magnitude and phase configurationbddiotir unbalance plane and the inner and outer oil-

film load capacity. On this account design configurationdradizated that could be set as a compromise in terms
of feasibility and low-cost production.
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A Appendix
A.1 Appendix: Sensitivity analysis

The application of Redundancy Analysis (RDA) [10, 12, 23] @8ntributes in locating certain sensitivity
origins among the variables and responses. Aim is to lobatenbst influencing variables with respect to not only
one selected response, but either all or a set of responses.

Linear regression analysis is performed on the matrix ofélsponse®R using the matrix of variable¥ and
then a standard Principal Component Analysis (PCA) is cotetlion the approximate matrix obtained by multi-
dimensional regression [10]. The set of resporBds varied according to the set of variabl¥sand thus, the
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multi linear regression model can be formulated for eachorseR ; individually (3)-(4), i.e.

1 1o vig - vim bo €1

T2 1 woq v -+ Va2 b1 €2
= A I o T Y U AP ) 3

Tp 1 vp1 Vp2 - - Upm bim €n

R; \'% b; €;
B = [b; by --- b;] € R™*" where b; = (VTV)" VTR, (4)

The vectorG containing the sensitivity coefficients is formulated bicogating the euclidean norm for each of the
row vectors of the regression coefficient matBxi.e.

N N T i
G= { HblH Hb2H HbJH } e R™*! with b;,j = 1,--- ,m being the row vector oB in (4).  (5)

A.2 Appendix: Self Organizing Map (SOM)

The Self Organizing Map (SOM) methodology is applied [13] uging the SOM Matlab toolbox [30]. For
the purpose of the current study the sequential trainingralgn has been applied, which is briefly outlined in
the following based on the exact description given in [19, 1Bor an in-depth description of the method see
[30, 13, 14].

Assume the high dimensional input data (variables and resgsiin Sectiof) be represented byd&adimensional
set of vectors. A weight vectdvl = [m; mo ... md]T € R4 is associated with each element of the SOM array,
which additionally is of equal dimension. At each trainirigps a random sample vectaris selected from the
input set and the associated distances w.r.t. to the weggttbks are calculated. Herewith, the Best Matching
Unit (BMU) is ascertained [13], which is calculated by aldiag the node index with the minimum distance
-Euclidean distance- from the input vector [30]:

[[x = me|| = min; {[|x — myl|} (6)

The SOM weight vectorm; are updated such that BMU gradually approaches the inptwvigcthe input space
with the associated BMU topological neighbors conductirgtame procedure. The time dependent update algo-
rithm used therefore is [30, 13, 14]:

m;(t + 1) = m;(t) + a(t)hei(t) x(t) —my(t)], ()

with «(t) being the monotonically decreasing learning rate [30, 4B,/1.;(¢) the neiborhood function around the
computed unit andt the time. A random initialization scheme is chosen for thé/S§@neration and the Gaussian
function is used for allocating the neighborhood functiQp(t) as defined in [30], i.e.

hei(t) = e~ dei/20% (8)

oy = nheighborhood radius at tinme
de; : distance between the map unitand: on the map grid
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