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Abstract

The requirements for the modelling of complex gemes explained. This includes model checks to gtlde
user. Models and analyses are demonstrated foe #xamples. For a model of a compressor train with
parallel-shaft gear considering coupling of latenadl torsional vibrations the contribution of theagbearings to
damping and stability is shown. For a train witmalti-stage planetary gear the torsional natuedjfiencies and
the harmonic response to gear excitation are Gkl In another example of a compressor train avNforecon
the torsional natural frequencies and a short tin@sponse are calculated. All examples have atiped
background from troubleshooting and engineeringkvatthough they do not exactly correspond to reaks.

1 Introduction

In industrial machinery gears are widely used. Rdrahaft gears consist of a wheel and one or re¢ve
pinions. They have limited gear ratios and pow&nga More complex arrangements such as planetaysgare
used for their high power density and high speéd.ra

The rotordynamic analysis of shaft trains thatudel complex gears requires the use of appropriatiels
and tools. In the following the modelling of suchibs and their analyses are presented. All théysesiin this
paper were carried out with the general rotordymaprogram MADYN 2000 [1]. Only the most common
analytical features for systems, where gears piaynportant role, are presented in this paper.

2 Model Types and Analytical Capabilities

2.1 Programs with Lumped-Mass Models

In the past lumped-mass models were widely usetbfsional analyses (for example DRESP, see [2jg¢nE
nowadays they are applied. In such models the masst continuously distributed, but concentrategiagle
nodes. It is common to summarise the mass of sesections to one lumped mass. The masses are atedne
by torsional springs representing the stiffnesshef sections between the nodes with masses. Thitead to
considerable inaccuracies, especially in the hififlegluency range.

In case of a geared system, the model is reducadt®-speed shaft line which uses the speed obfothe
branches as reference. The presentation of thelraadeshapes then are not very clear. The couplinateral
and torsional vibrations in gears cannot be comneile

Analytical capabilities are wide and include eigaloe analyses, harmonic response analyses as svell a
linear and nonlinear transient response analyses.

Since these programs allow only torsional analgsssparate program for lateral analyses is required

2.2 General Multi-Body Systems

General multi-body programs offer the possibilitymhodel complex physical behaviours. However they a
not focused on rotordynamics and require biggartfffor modelling. They also do not provide soreeessary
features such as the calculation of the propedfidisiid film bearings for example.

General multi-body software such as SIMPACK [3] freused on time-domain transient calculations and
do not have complex eigenvalue solvers, which ame commonly available in finite element programs.
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2.3 MADYN 2000

In MADYN 2000 the rotor structures are modelledhwit-D finite elements according to the Timoshenko
beam theory considering the shear deformation awasgopic effects. Each cross section can have
superimposed cross sections with different massstiffdess diameter as well as different materialperties.
The shafts are modelled with their real geometratires, not with lumped-mass substitutes. Foroseittertias
a consistent mass matrix is used.

The shafts can be connected with different typesasfectors: Rigid shaft-to-shaft connections, ifikx
couplings, gear meshes, shaft-in-shaft connectigamsearings. For connections to a planet carrispecial
connector exists. Complex gears and coupled shaff tan be modelled with the help of these colngcthe
user can set the degrees of freedom of each dtméral, torsional or axial analyses can be cardet] or a
combination of any of these analyses. Radial bgarire readily available and can be modelled whitkirt
speed- and load- dependant properties using sgeddCFD solver which is integrated in MADYN 20@).[

Thus in a lateral-torsional coupled system the riomtion of the bearings to the torsional dampiag de
considered. Moreover the coupled analysis allowssitoulate lateral gear vibrations caused by toadion
excitation, and vice versa to calculate torsioraponse to lateral excitation such as gear unbalanc

Each shaft has its own speed. The model is notceztito a single reference speed. The program clibeks
shaft speeds and directions of rotation on thesbakihe system connections. Shafts connected filgxible
coupling should have the same speed. Shafts cathdt gear meshes should have speeds according to a
certain speed ratio. These automatic checks ayehedipful for complex systems.

The program offers the possibility to carry outtistaanalyses, complex eigenvalue analyses, harmonic
response analyses as well as linear and non-lin@asient response analyses. The model and thésresa
stored in one file and all analysis steps (modelcudation and post-processing) are controlled frone
interface. Consistency of results and models israatically ensured.

2.3.1 Basic gear model

A basic parallel-shafts gear is modelled with twafts (a gear wheel and a pinion) and a “gear atiorg.
It is moreover possible to connect several pinimnene gear wheel or to use several gear connactietween
two shafts (for example to model a double-helicgdry. It is also possible for a shaft to be parboé gear
through a gear connection, and be part of anotkar through another gear connection. The flexjbilitat
results from the use of such a gear connectiorwallthe modelling of complex gears such as multjesta
planetary gears for example.

The gear connection consists of two rigid elemés the shaft centres of the pinions and the wheéhe
mesh. The two rigid elements are connected witireciional gear spring at the mesh location. Thesgitch
radii of the wheel and pinion (the gear ratio is thtio of the pitch radii), the contact angles, tiheth stiffness in
direction of the contact angles, the kind of megHinner or outer mesh) and the relative angulaitipm of the
pinion with respect to the wheel are modelled. Exas of basic gear connections are shown in figur€he
model of a real double helical gear is shown inifig2.
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Figure 1: Examples of gear connections: outer Figure 2: Double helical gear with two gear
mesh (left) and inner mesh (right). connections.

2.3.2 Planetary gear model

A planetary gear is modelled with two gear conmeiper planet: One gear connection with outer rtieesh
connects the sun to the planet and one gear caonmegith inner mesh that connects the planet toattveulus.
This layout is shown in figure 3.

It is possible to have several planetary gearsni@ system. The planetary gears can be coupledtheg.
planet carrier of a planetary gear can be the aismfl another planetary gear. Such a design allomsigh gear
ratios in a compact layout.
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Planets with a rotating axis have a rotating plaaetier. The planet carrier therefore has to beetied as a
rotor and connected to the planets or the planes,aespectively.

Planet Annulus r
i a)
+ = ‘

Sun
Rotating planet Circle diameter of
carrier the planet shafts

Figure 3: Basic model of a planetary gear (planet Figure 4: Simplified torsional model of a planetary

carrier not shown). gear with a rotating planet carrier.

The main property of this connection is the cidi@meter of the planet shafts (see figure 4). Wheotating
planet carrier is defined the planets must be iinetne lateral directions, since rotation of theries causes a
lateral movement of the offset axes. This is netdhse for a pure torsional analysis with a statpoarrier.

For a pure torsional analysis it is not necessampadel the bearings. For a lateral-torsional cediginalysis,
however, it is possible to model the planet beargwgd supports.

2.3.3 Automatic correctness check of speeds

Many special equations for shaft speeds are knowpdrticular types of gear systems, but a singlearsal
method is needed for use in the software. Althcalhfollowing equations may seem obvious to evargieeer,
authors haven't found them published in such gémeaghematical form.

The main idea of the method is to build severatdinequations for each connection point and sdiee t
entire system of equations considering the usartinps boundary conditions. The specialty of ther@gch is
the consideration of lateral velocities of shafesxduring the calculation as they occur for planets with a
rotating carrier:

The direction of rotation is considered in the
sign of w, therefore the value is negative for the
“Outer mesh” shaft in figure 5. The instantaneous
velocity at the contact point of each shaft can be
calculated as follows:

Veontact = Vaxis + R-w 1)

-
VContact

The direction of the vectoR depends on the
position of the respective shaft. In particularthié
Outer mesh shaft is connected to the outer mesh of another
shaft, vectors are opposite.

The velocities at the contact point for a pair of

Inner mesh
. . ) shafts must be equal:
Figure 5: Diagram of the coordinate system Vigis1 + Ry @y =Vigisa + Ry -0y, (2)

The radius-vectors are given by the model, but k@m andw are considered unknown variables for all
shafts at this moment. For linear rotor dynamicshwamall perturbations of a stationary conditiomsi
velocities represent linearized small deviationisefEfore the vectors R #},;; do not change in time with the
rotation of a planet carrier.

In the frequent case of stationary shaft axeshas parallel gear, this equation transforms ine well-
known form:

w1/w; = —Ry/Ry (3

This relation alone is insufficient for models walrotating planet carrier. The connection of anBlaarrier
to a pin (see for example inset on Fig. 13) is aciEp case of equation (2), whétg= 0, because the
connection acts at the axis of the pin shaft witoffset:

Vaxis1 + Ry " 01 = Vayis 2 4)
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The pin shaft is rigidly attached to its carridrettefore their rotational speeds must be equahéngiobal
coordinate system:

Wpin = Wcarrier (5)

In simplified models for pure torsional analyseshéne all bearings are ignored) planet shafts might
directly mounted onto the carrier. The pin and éigug5) are not needed then (see fig. 4).

Two kinds of boundary conditions can be set to cedihe unknowns of the system of equations (2) and
solve it:

a. Some shafts are stationary
Shafts which are connected to the common statdr avidtationary bearing are given zero velocityheirt axes,
as well as all shafts with no lateral degrees@dédiom. Otherwise thelt,,;; remain free.

Visisi =0 for i€ stationary shafts (6)
If there are no stationary shafts, then the syssemot statically defined and no unique solutioistsx

b. Speed of rotatiom is given
The user has to enter rotational speeds for alftshia MADYN 2000. Nevertheless, this input might¢ b
imprecise or partially incorrect.

The proposed algorithm tries to account for as maser-defined shaft speeds as possible going thralig
shafts in the system:
1. Select the most recently modified shaft among #teupvisited shafts.
2. Extend the system of equations with the assumpmtigatation speed of the selected shaft:

w; = wlyser—defmed (7)
3. Solve the system for all unknowns:andV,;

4. In case of a conflict with previously accepted eabf any of the unknowns, reject the assumptiora(ic)
skip steps 5 and 6.

Mark shafts, where matches user input within given tolerance, as@eckand visited.

Save the solution as current best guess.

7. Repeat the algorithm for remaining shafts.

oo

The solution may either confirm consistent useotrgr suggest a correction with a diagnostic messag

Tables 1 and 2 illustrate this algorithm for thedmloshown on fig. 6 of a motor, gear (with ratid.B67)
and a compressor. For demonstration purposesagssmed that incorrect speed is entered for therRiand
that a fluid coupling is installed between piniamdacompressor. Therefore speeds of the connectdts sire
not directly related — there are two independehtststems.

All shaft axes are stationary; thereforeldll;; are zero and aren’t shown in the table.

On the first iteration, equation (7) is added floe motor shaft, setting 2000 rpm (shown underliresi
boundary condition. The resulting solution of tlgstem of equations already matches user inputfafts 1 and
2 (shown in bold), so nothing has to be done fentheel.

Iteration 1 Iteration 2 (Iteration 3)

Shaft o Input | © Sol. Input| Sol. Shaft o Input | © Sol. Result
1. Motor 2000| 2000 2000| 2000 1. Motor 2000 1992 2000
2. Wheel 2000 2000 2000| 2000 2. Wheel 2000 1985 2000
3. Compr. -6000 0 -6000 | -6000 3. Compr. -6000 | -6000 -6000
4. Pinion -8000 | -8734 -8000 | -8734 4. Pinion -8000| -8001 -8734
Table 1: Solutions of the system on iterations 1-2. Table 2: Rejected approximate solution of the

system on iteration 3 and final solution.

Result for shaft 3 does not match, because itsdsigemdependent from the rest of the system; fafts4,
because of wrong user input. The algorithm doesnadke a distinction between these two cases.

On the _second iteration, another boundary condittoadded for the Compressor shaft (number 3). The
solution is now correct, but not all user inputsdnbeen verified, so the algorithm continues.

On the_third iteration, program tries to validdte solution for the Pinion by enforcing its giveseed as yet
another boundary condition. This leads to overrasfisystem of equations and an approximate solufibis
newly introduced constraint is rejected, becaus®és not hold in the solution and previously ategpesults
for shafts 1 and 2 became wrong as well. This eglidtion means that given speed of the Pinion angr
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Finally the program accepts the result of the sddteration and concludes that pinion must be ogaht
8734 rpm in the negative direction using the girertor speed as a decision basis.

If not all shaft axes in the system are fixed athiznexample described above, each unknown v@g;gris
numerically represented as two scalar projectionte the global coordinate system used in MADYN 2080
couple of such systems are described in detaftseifiollowing section:

Example 2 (Mill Train, fig. 13) contains 18 shafied 25 connections of different kinds. This leansat
system of 56 equations and 54 scalar variables.

Example 3 (Vorecon, fig. 18) consists of two spaetependent subsystems. It contains 20 shafts @nd 2
connections. Resulting system of equations hasn&®@awns, constrained by 96 equations. All but 4ftshare
stationary (boundary condition of type ‘a’), so testem can be significantly reduced to just 28nomkns (20
shaft speeds + 2 projections Iafxis of 4 revolving planets) and 31 equations. The detepsolution is fully
defined in just two iterations. As in the Motor-G&€ompressor example only 2 boundary conditiontypé ‘b’
are needed.

3 Examples of Analyses

3.1 Coupled Lateral-Torsional Analysis of a Geared@Compressor Shaft Train

The vibration behaviour of a compression trainrialgsed, with particular attention to the laterddration
behaviour of the gear pinion and its contributiorthe damping of torsional modes. The system caseke in
figure 6.

Forces at the gear shaft bearings (hence the lgeanharacteristics) strongly depend on the torquéh@n
geared shaft train. Therefore the dynamic behaviduhe gear shafts must be analysed for all pemtifoad
cases. Here the analysis focuses on low gear (G886 of the nominal load).

The centrifugal compressor is driven by an
electric motor through a parallel-shaft gear. All
machines are connected with flexible couplings.

Compressor) _ ) |
> As a first step independent torsional and lateral
Gear o analyses are carried out. The torsional analysis is
whee)li Ny done with a pure torsional model of the train, i.e.
Motor {)/Q “Pinion with a model, where the only degree of freedom is
’ angular displacement around the axis of rotation.
¢ z/ The first three torsional modes of the train are

Figure 6: Torsional model of the compressor train. shown in figure 7. The shaded red curves represent
the torsional angle scaled with the gear radii.

For the lateral analysis of the pinion a stand-altateral model is used. The bearing coefficieritshe
pinion are calculated within MADYN 2000. After detgining the static bearing forces for the considegear
load, the stiffness and damping coefficients adeutated as a function of the speed (with speed:dépnt
temperature and viscosity).

Two types of bearings are considered: 2-lobe bgarand 4-lobe bearings. The first three lateral esoof
the pinion for operation at nominal speed and 10%® nominal load are shown in figure 8 and 9.”Nibth
types of bearings the modes are well damped.

PL92Rz P2:115 Hz P1:94.1 Hz P2: 120 Hz
Damping: 12}/9« N\ Damping: 30% g

s
»

A

P3: 535 Hz
Damping: 13%

P3:572 Hz
Damping: 16% /{\;,f

Figure 8: Pinion modes, 2-lobe bearings, 10% load. Figure 9: Pinion modes, 4-lobe bearings, 10% load.
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From these results no problems are expected, #irgcéorsional modes are not in resonance with agiev
excitations and the lateral modes in the speederahthe pinion up to 7'800 rpm are well damped.

In addition to these standard analyses a couptedhlatorsional analysis is carried out. In the eldtie gear
shafts, in which coupling between the lateral aosional displacement can occur, have their latara
torsional degrees of freedom free. The motor ardcttmpressor only have their torsional degreesesfdiom
free. The coupled modes of the train are showigimrés 10 (2-lobe bearings) and in figure 11 (delblearings).
The operating speed is the nominal speed; the Igedris 10% of the nominal load. It can be seen tha
torsional modes T1 and T2 combine rotational disgeent in all shafts (in red), and lateral dispfaeet in the

pinion (in blue). With the 2-lobe bearings the damgpratio of the 2 torsional mode is negative, i.e. the mode is
unstable.

The lateral tilting modes of the pinion also changthe coupled analysis.
In [4] a similar case is reported for a compredsain, which exhibited very high non-synchronousign

vibration after start-up, when the load in the coesgor was still low. The problem was resolved dplacing
the 2-lobe bearings of the pinion by 4-lobe bearing
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Figure 7: Train torsional modes.

e P

T1:22.7H LI /

Damping: ; 2% y A T e
ne - T1: 21.8 Hz L

3" Damping: 2.9%//44/»

T2: 73.0 Hz
Damping:-0.62%

T2:69.2 Hz
Damping: 6.8%

\ g
NS
= s
“ ' S >\/
s
: « i
I8
5
j

P1: 76 Hz
Damping: 71%

P1:91.7 Hz
Damping: 65%

P2: 87 Hz
Damping: 45%

P2:98.1 Hz
Damping: 41%

AN
® 4
It // 3
N ///' -« /
e >
! I
i

Figure 10: Coupled modes, 2-lobe bearing, 10% load.  Figure 11: Coupled modes, 4-lobe bearing, 10% load.
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S — 2-lobe brg. In figure 12 one can see the damping ratio of the

E 4 — 4-lobe brg. | 2" torsional mode as a function of the power

S transmitted by the gear. It is shown that for a ow

z below 12% of the nominal power th&"2orsional

go LN mode is unstable with the 2-lobe bearings. With the

a V 12% 4- lobe bearings the damping ratio of the mode is
45 50 20 60 80 100 always positive.

Gear load [%]

Figure 12: Damping of mode T2 versus power.

3.2 Torsional Natural Frequencies of a Mill Train

The shaft train of this example consists of a fispéed electric motor, a two-stage planetary gsed in a
mill. The overall speed ratio is 40. The motorameected to the gear through a rubber couplingaa®@® bevel
gear which provides a first stage of speed reduoctio the gear itself there are two planetary geinge sun of
the first stage is connected to the bevel gearudgpaft through a toothed coupling. The annulughi first
stage is rigidly connected to the sun of the seatade, while the planet carrier of the first stegeonnected to
the annulus of the second stage which is also thpub shaft. Hence the planet carrier of the fatsige is
rotating, whereas the planet carrier of the sectagde is fixed. A plot of the train model is showrfigure 13.

I
1* stage planets »
with bearings an 1 TH 1° stage 2" stage A \
flexible supports . /pla?gt )shaft annulus \
- pin
.. - \ /
ol st t 4
! 1% stage planet 1"s &llg&\\\; v :
«—— " carrier (rotating annuius i |
[ 1% stage X
sun Y x
' g/ Eamres y
] Motor ﬁﬂm Z1 M—
\ (lump mass model) BeVﬁ' glear ;\
wheel ™—_ | 2 stage-{ (P2 I I \
\ | sun I \
T X /|
\ PR
|
Rubber Bevel gea 2" stage planets with bearinés
- coupling pinion and flexible supports 1L
Output,_—
mill table

Figure 13: Model of the mill train (motor and bevel gear simow the same plane as the gear).

One of the objectives of the analysis is to caleuthe torsional natural frequencies of the coneplietin and
verify that none of them was in a prohibited rangee damping in the rubber coupling is taken intocant.
Moreover the influence of the flexibility of thegslet shafts and of the planet bearings on the msitkdls be
checked. Therefore a coupled lateral-torsionalesyss required.

The loads are applied as torques and the bearaus lare automatically received.

Throughout the modelling process the system isicootisly checked with the automatic correctnesskde
provided by MADYN 2000. Before proceeding with thigenvalue analysis a further check is carriedvatit a

static analysis. A rotational angle is appliedh&t input shaft and it is checked if the output anglaccording to
the gear ratio.
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The mode shapes of thé' &and 2° mode are shown in figure 14. There are no modethenforbidden

frequency window.
The T mode has its main deflection in the rubber cougplits damping mostly comes from the coupling and
to some extent from the bearings.

1% torsional mode 7.35 Hz 2" torsional mode 27.0 Hz
coupling damping 6.2%, bearing damping 0.4% coupling damping 1.3%, bearing damping 0.6%

Figure 14: 1% and 29 torsional modes.

The lateral-torsional coupling is stronger for the

2nd mode, as can be seen from its higher bearing — Torsional angle —

damping. In figure 15 the displacement in the — Bending displacement

bearing and in the planet shaft of tiiestage planet — Support displacement ,

is shown for this mode.
The natural frequency of thé' inode is close to W

the speed of the shaft line consisting of the bevel
gear wheel, the toothed coupling and the sun of
stage 1. The sensitivity of the®Imode to an
excitation in the sun of theistage was analysed
with a harmonic response analysis. A total damping
ratio of 7.2% was considered: 6.2% from coupling
damping, 0.4% from bearing damping and 0.625%
from structural damping.

An excitation amplitude of 1% of the rated torquaswconsidered. The results of the harmonic response
analysis are shown in figure 16.

The response in the rubber coupling is 2’670 Nmictvlis a few percent of the nominal motor torqube T
response forces in the five gear meshes are atsé@jtew percent of the nominal tangential gearhrfesces.
The maximum shaft stress occurs in the bevel gbaehshaft (1.1 MPa).

Figure 15: 2" torsional mode shape® stage
planet and ¥ stage planet shaft.

Response torque in the rubber coupling

3000 ‘ ‘
g F 2'670 Nm — Rubber
Z,200¢ coupling Shaft stresses
g - MP
51000 — a
e 1
0
5 6 7 8 9 10
Freapency JEHz1 i= =
10
Response forces in the meshes
1200 . =l

5 6 7 8 9 10
Frequenc JHz1

Figure 16: Results of the harmonic response analysis.
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3.3 Torsional Analysis of a Compressor Shaft Trainvith a Vorecon

In this example the shaft train includes a fixe@&exp synchronous motor, a Vorecon and a centrifugal
compressor. The system is shown in figure 17 aed\ubrecon in figure 18. The motor is connectedhe t
primary shaft of the Vorecon through a rubber cmgplThe coupling between the Vorecon and the cessar
is a membrane coupling.

The variable speed in the high speed section is
obtained by means of the Vorecon. The Vorecon is

@zﬁﬁﬁﬂ a gear with a fixed input speed and a variable
P ° output speed. The output gear stage is a planetary
5 v< Compressc gear with a rotating planet carrier. Speed vanmtio
,y") ~——"Hs couplin is obtained by varying the speed of the planet
’}Q Vorecor ' carrier. The planet carrier is driven by a hydmauli
ﬁ/ V< torque converter that takes its power from the fnpu
;tff//LS coupling shaft. The output speed of the torque converter is
Motor varied by regulating the oil flow that goes through
Figure 17: Torsionalmodelof thecompressotrain. it. Its speed is reduced by a planetary gear with a

fixed planet carrier to drive the planet carrierthod
output planetary gear.
The purpose of the analyses is to determine th&otwal natural modes in operation and the transient
responses to run-up and short circuit excitations.

Output
shaft

Primary
shaft

Torque - J
, , converter Y
Variable speed hydraulic Planetary gear with Planetary gear with
coupling with clutch fixed carrier rotating carrier

Figure 18: Model of the Vorecon.

The torsional mode shapes of the first four moddbetrain are shown in figure 19. The first mqdé.04
Hz) has the motor vibrating against the rest oftthim. The deformation occurs in the low speedpting and in
the input shaft of the Vorecon. The second modbdsmode of the variable speed hydraulic coupliay. both
modes the displacement in the input shaft is shioviigure 20.

The transient analyses were carried out with ca@maiibn of the non-linear behaviour of the rubhecks in
the low speed coupling and of the individual modending ratios. The response torques in the coupiimgase
of 2-phase short-circuit can be found in figure &ML torques are plotted in p.u. (= Power Unit) awder to the
motor power and nominal shaft speed. The torquebelow the maximal allowable torques of the caogdi

4 Summary

The modelling and rotordynamic analysis of compdears is illustrated with three examples: A patalle
shaft gear, a multi-stage planetary gear and adéoreThe influence of the bearings, the bearingsup and
the coupling between lateral and torsional vibradi@re considered. These extended analytical dajesbi
provide engineers a tools for the design of modeschinery and the simulation of complex phenomenzase
of troubleshooting.
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2" torsional mode 26.97 Hz
coupling damping: 1.73%

15 torsional mode 16.04 Hz
coupling damping: 2.42%

3" torsional mode 67.96 Hz 4™ torsional mode 100.8 Hz

coupling damping: 0.00% coupling damping: 5.46% ﬁﬁ%’*“
e =
Figure 19: Torsional mode shapes of the train
2.5 P ——
1.86 — LS coupling
1st mode 16.04 Hz "$mode 26.97 H — — HS coupling
S . — |
s
ol
e
I
% ! ?glo 5”\ V
| < I\
-1 ‘
0 Time [s] 0.25
Figure 20: 1% and 2° torsional mode shapes, Figure 21: Transient 2-phase short circuit response,
Vorecon input shaft. coupling torques.
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