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Abstract
A rigid rotor model and a reduced model of air foil bearings are introduced, coupled and solved simultaneously.

The rotor and bearing structure models are kept simple, while the fluid model is reduced, aiming for time efficient
numerical simulations to investigate fundamental physics, mainly the influence of bearing compliancy on the rotor
dynamics. A run up simulation is performed to show the onset of whirl motion. Angular velocity depending
stationary rotor positions and their stability are determined for a variation of the bearing compliance and the
nondimensional rotor mass parameter. The topology of solutions is investigated by a bifurcation analysis, using
numerical path following methods.

1 Introduction
Oil-free bearing concepts are a promising approach for optimising high speed rotating - and turbomachinery.

Major advantages of air lubricated bearing systems, in comparison to oil lubricated bearing systems are power loss
reduction, less maintenance costs, higher temperature resistance and higher operating shaft speeds, [4], [7]. As an
improvement of self-acting (rigid) journal bearings, foilbearings were evolved to minimize instability problems,
reduce manufacturing tolerances, and permit adaptation ofthe bearing to changes in shaft diameter caused by cen-
trifugal force or temperature gradients, [6]. However, a crucial criterion for the choice of the bearing concept is
the dynamical behavior of the rotor during operation, whichis significantly influenced by the bearings. In particu-
lar, the bearing forces could lead to self excited vibrations. Consequently, disruptive rotor vibrations could occur,
whereas a safe operation might not be possible. To this end, comprehensive knowledge of bearing characteristics
and the interaction between bearings and rotor should be recognized to design an appropriate rotor bearing system.

In order to get more insights of the influences of air foil bearings, in particular the compliancy of the bearing,
on the dynamical behavior of rotors, a coupled air foil bearing rotor model is investigated. The rotor and bearing
model are kept simple, while the focus of this work is to understand the crucial physics of whirl instabilities and
tendencies to influence their occurrence.

2 Rotor Model
The investigated rotor model is chosen as simple as possible, to solely study the effects of the air bearings

on the dynamics of the rotor, without any excitation. Thus, arigid rotor of mass2M without static and dynamic
unbalance, horizontally and symmetrically mounted by two identical bearings is assumed, see Figure 1. Due to
the symmetry the investigated problem will be restricted toplane motions, whereasP states the center of the rotor,
which coincides with the center of mass.

In order to describe the kinematics, a spaced fixed frame I(O, eI
x, e

I
y, e

I
z) and a co-rotation frame II(O, eII

r , e
II
γ ,

e
II
z ) whereeI

z = e
II
z are introduced, cf. Figure 1(b). The originO of both frames is located on the connecting

line between the center points of the bearings, while the axis of rotation is collinear to theeI/II
z axes. The angular

velocity of the rotorω = ωeI
z is considered to be given and consequently is no degree of freedom. The orientation

of the co-rotating frame II with respect to frame I is given bythe angleγ. The position ofP with respect toO
is given by the Cartesian coordinatesxp andyP with respect to system I. Likewise the position ofP can also be
defined by the eccentricity vectoreP = eP e

II
r , using polar coordinateseP (eccentricity) andγ (attitude angle).
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Figure 1: Model rotor in symmetrical bearings (a), free body diagramof rotor (b)

The conversion between these two descriptions are given by

eP =
√

x2P + y2P , tan γ =
yP
xP

. (1)

Thus, the investigated rotor model has two degrees of freedom, eitherxP , yP or eP , γ.
Applying the forces given in the free body diagram (Figure 1(b)), Newton’s 2nd law yields the equations of

motion

MẍP + Fx = Mg (2)

MÿP + Fy = 0 (3)

whereFx, Fy are the components of the bearing force of either bearing ine
I
x− ande

I
y−direction, which are

nonlinear functions depending on the state of the journal and its angular velocity.

Fi = Fi(xP , yP , ẋP , ẏP , ω), i = x, y. (4)

3 Bearing Model
Figure 2(a) shows a sketch of the bearing with the relevant geometry parameters and coordinates. The nominal

radius of the undeformed bearing isR, L is the bearing length, andr the journal’s radius. The radial clearance of
the undeformed bearing ish0 = R− r. The fluid film height is given byh− q, whileh states the variation due to
the displacement of the rotor with respect to the undeformedbearing wall andq the wall deflection. Both,h and
q are functions of the circumferential coordinateϕ, starting at the spatially fixedeI

x-axis, and an axial coordinate.
Since the maximum eccentricityeP,max for air bearings is typically small compared to the geometryparameters of
the bearing(eP,max ≫ R, r, L), the gap heighth with respect to the undeflected bearing wall can be expressedas

h ≈ h0 − eP cos(ϕ− γ), (5)

assuming the co-centricity of journal axis and symmetry axis of the bearing. Using addition theorems, the gap
height (5) can be expressed in terms of the Cartesian coordinates

h ≈ h0 − xP cos(ϕ)− yP sin(ϕ). (6)

Furthermore, by considering a small fluid heighth − q compared to its length in circumferential direction, the
curvature of the fluid film can be neglected, cf. [13] f.i.. Consequently a plane description of the fluid film area
using Cartesian coordinates may be used, wherexf = Rϕ is the circumferential andzf is the axial position
(see Figure 2(b)).
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Figure 2: Bearing geometry and coordinates (a), unwrapped fluid plane and coordinates (b)

3.1 Fluid Modelling
Applying the common assumptions of fluid film lubrication theory [7], and assuming the fluid behaving as

an ideal gas, the gas pressurep may be described by the Reynolds equation for compressible fluids (cf. [13] for
instance)

∂

∂xf

[

p(h− q)3

µ

∂p

∂xf

]

+
∂

∂zf

[

p(h− q)3

µ

∂p

∂zf

]

− 6ωR
∂

∂xf
[p(h− q)]− 12

∂

∂t
[p(h− q)] = 0. (7)

in ΩD = {(xf , zf ) |xf = 0..2πR, zf = −L/2..L/2}, whereµ is the viscosity of the fluid, respective air. This
partial differential equation is accompanied by the boundary conditions

p(zf = −
L

2
) = p(zf =

L

2
) = p0, , p(xf = 0) = p(xf = 2πR) (8)

see Figure 2(b) and the initial conditionp(xf , zf , t = 0) = pt0 . Once the pressure distribution has been determined
from (7) with (8) and I.C., the bearing forces acting on the rotor can be determined by

Fx =

∫ 2π

0

∫ L

2

−
L

2

p cos(ϕ) dzf Rdϕ , Fy =

∫ 2π

0

∫ L

2

−
L

2

p sin(ϕ) dzf Rdϕ. (9)

3.2 Structure Modelling
The compliant structure underneath the fluid film is model as massless, rigid elements with one finite dimension

in axial (eIII
z ) direction, supported by linear elastic springs (stiffness k), without any couplings in circumferential

(eIII
x ) direction, see Figure 3(a) and (b) respectively. This model is a further reduction of a 1D model presented

and validated by San Andres and Kim in [12], neglecting the bending stiffness of the top foil in circumferential
direction and the finite gap between the contact points of thefoil and elastic support (bumps). On the other hand, the
presented model has a slight enhancement compared to the simple elastic foundation model (Winklerfoundation)
presented by Heshmat in [8], with the major advantage that eccentricitieseP > 1 are physically possible, since a
deflection of the structure at the axial ends (zf = ±L

2
), where the fluid pressure is equal the ambient pressure, see

8, is feasible. The deflection of a single axial element is given by

kq = −(p− Lp0), (10)

wherep0 is the ambient pressure and

p =

∫ L

2

−
L

2

p dzf (11)
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Figure 3: 3D view of structure model (a), single rigid element of bearing structure (b)

the axial averaged pressure.

4 Nondimensional Equations
4.1 Fluid and Structure

Using the transformations

ϕ =
xf
R
, z∗f =

zf
L
, εP =

eP
h0
, x∗P =

xP
h0
, y∗P =

yP
h0
, p∗ =

p

p0
, τ = tΩ, (12)

for the independent and dependent variables, the fluid film height, the deflection of the structure and the angular
velocity of the rotor are consequently transformed by

h∗ =
h

h0
, q∗ =

q

h0
, ω∗ =

ω

Ω
. (13)

Substituting (12) and (13) in (7) leads to

∂

∂ϕ

[

p∗(h∗ − q∗)3
∂p∗

∂ϕ

]

+ κ2
∂

∂z∗f

[

p∗(h∗ − q∗)3
∂p∗

∂z∗f

]

− ω∗
∂

∂ϕ

[

p∗(h∗ − q∗)
]

− 2
∂

∂τ

[

p∗(h∗ − q∗)
]

= 0,(14)

onΩD∗ =
{

(ϕ, z∗f ) | ϕ = 0..2π, z∗f = −1/2..1/2
}

, with two geometric similarity parametersψ, κ and the char-

acteristic angular velocity and inverse time scaleΩ

ψ =
h0
R

, κ =
R

L
, Ω =

p0ψ
2

6µ
=

p0h
2
0

6µR2
. (15)

The scaled gap functionh∗ (5), (6) results as

h∗ = 1− εP cos(ϕ− γ) = 1− x∗P cos(ϕ)− y∗P sin(ϕ). (16)

Applying the transformations (12) to the averaged pressure(11) leads to

p∗ =
p

L p0
, with p∗ =

∫ 1

2

−
1

2

p∗ dz∗, (17)

while the nondimensional structure equation (10) is given by

q∗ = α(1− p∗) (18)
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with the definition of a compliance parameterα as

α =
p0L

kh0
=

p0
kψκ

. (19)

A rigid bearing model is obtained forα = 0.

4.2 Rotor
Using the transformations in (12), the rotor’s equations ofmotion (2), (3) are reformulated as

x∗
′′

P + ΓF ∗

x = Ξ (20)

y∗
′′

P + ΓF ∗

y = 0, (21)

where a prime(.)
′

= d
dτ (.) denotes the derivate with respect to the nondimensional time τ . In (20) and (21), two

additional nondimensional parameters

Γ =
p0RL

Mh0Ω2
,=

36µ2R5L

p0Mh50
, Ξ =

g

h0Ω2
,=

36gµ2R4

p20h
5
0

, (22)

are introduced. The parameterΓ is a characteristic force ratio of bearing and inertia forceandΞ is a characteristic
force ratio of load and inertia force.

5 Model Dimension Reduction
With the objective of deriving a fast coupled nonlinear rotor bearing model, the dimension of the fluid equation

(14) is reduced by using a Galerkin-approach of Kantorovichtype [9] analog to [1]. Motivated by full numerical
solutions using FD discretisation the unknown pressure functionp∗(ϕ, z∗f , τ) is assumed as a product

p∗a(ϕ, z
∗

f , τ) =

n
∑

i=1

p̃∗ai(z
∗

f )p̂
∗

ai(ϕ, τ) + 1, (23)

of time-invariant axial shape functions̃p∗ai only depending on the axial coordinatez∗f and circumferential func-
tions p̂∗ai, which depend on the nondimensional timeτ and the circumferential coordinateϕ. Here, the indexa
indicates that an approximationp∗ ≈ p∗a is determined. Assuming a one term parabolic axial shape function, the
approximated solution takes the form

p∗a(ϕ, z
∗

f , τ) = (
1

4
− z∗ 2

f )p̂∗a1(ϕ, τ) + 1. (24)

The approximated averaged pressure (17) for the assumed pressure function (24) is given by

p∗a1 =
1

6
p̂∗a1(ϕ, τ) + 1. (25)

Substituting (18) in (14) and furthermore (24) and (25) intothe resulting Reynolds equation, while demanding
that the averaged weighted residuum vanishes eventually yields – after evaluation of integrals and appropriate
rearranging – a reduced PDE and B.C. of the form

∂p̂∗a1
∂τ

= p̂∗
′

a1 = f

(

p̂∗a1,
∂

∂ϕ
p̂∗a1,

∂2

∂ϕ2
p̂∗a1, x

∗

P , y
∗

P , x
∗
′

P , y
∗
′

P , ω
∗, κ, α

)

(26)

B.C. : p̂∗a1(ϕ = 0)
!
= p̂∗a1(ϕ = 2π) ∀t, (27)

onΩD∗red = {(ϕ) | ϕ = 0..2π}.
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Table 1: Parameter values

Non-dim. par. Definition Value Non-dim. par. Definition Value

ψ h0

R
10−3 Γ 36µ2R5L

p0Mh5

0

0.5, 0.75, 1, 2, 4

κ R
L

1

2
Ξ 36gµ2R4

p2
0
h5

0

0.572

α p0
k ψ κ

0..2

6 Discretisation and Parameters
For numerical approximations of (26), finite central differences (FD) of derivatives with respect to the remain-

ing spatial coordinateϕ

∂

∂ϕ
p̂∗a1 ≈

p̂∗j+1 − p̂∗j−1

2∆ϕ
,

∂2

∂ϕ2
p̂∗a1 ≈

p̂∗j+1 − 2p̂∗j + p̂∗j−1

∆ϕ2
. (28)

are used. Thus, the reduced domain is divided into a uniform grid of m collocation pointŝp∗i , i = 1..m. Together
with the mechanical state variables of the rotor centerP , a state-space-matrix

x = [x∗P , y
∗

P , x
∗
′

P , y
∗
′

P | p̂∗1, . . . , p̂
∗

j . . . , p̂
∗

m]T (29)

of lengthm+ 4 is defined. Using the state-space-matrixx, a coupled first order system of nonlinear ODE can be
defined

x
′

= X(x(τ)), (30)

including the rotor equations (20) and (21) and the discretised fluid equations (26). The physical model presented
here is quite similar to the model presented in [2] by Bonelloand Pham, whereas the (linear) damping characteristic
of the structure, as well as the static unbalance and accordingly the excitation is additionally neglected. In their
contribution, the nonlinear fluid equation is also reduced by a Galerkin-approach. But in [2] Bonello and Pham
are using different and more trial functions in axial direction, and furthermore trial functions in circumferential
direction, too.

The system (30) is autonomous, since no explicit time dependence (e.g. harmonic excitation by unbalance) is
existing. Time-integration of (30) is solved efficiently bymeans of standard solvers for initial value ODE-problems,
using Matlab. The subsequent bifurcation analysis is conducted, using the continuation toolbox MatCont, [5].
For the following investigations the ambient pressure is chosen asp0 = 105 [N m−2], the viscosity of air as
µ = 1.8 · 10−5 [N s m−2]. The values of the nondimensional parameters are listed in Table 1. Based on the chosen
parameters, the time and angular velocity scale (15) can quantitatively be determined asΩ = 9.26 · 102 [s−1].

7 Numerical Analysis - Results
7.1 Time Integration - Run Up

To show the applicability as well as the numerical efficiencyof the presented model a run up simulation of
the rotor is performed. Thus, the rotor speed is linearly increased betweennlow = 5000rpm (ω∗ = 0.57) and
nhigh = 12500rpm (ω∗ = 1.41), within an interval of30s. Figure 4, shows exemplarily some results of the state
variablesx∗P , y

∗

P of the rotor’s centerP , for the parametersα = 0.5,Γ = 2. The simulation time, performed on
an i5 CPU with 4GB ram was350s. It is observable, thatP remains at an almost fixed position(ε

′

P ≈ γ
′

≈ 0)
at low speeds. After passing a certain thresholdω∗

s , self excited vibrations occur and the rotor starts to whirlwith
fast increasing radii and approximately half the angular velocity of the rotor(γ

′

≈ ω∗

2
), see Figure 4 (b), (c).

Motivating a bifurcation analysis, run down simulations with the same parameters and within the same time
interval, solely switching start - and end rotor speed are performed. The state variables of the rotor are shown in
Figure 4 (d). One obviously observes the difference in rotorspeed or time interval, where the self excited vibrations
during run up occur and where the vibrations of the rotor during run down vanishes.
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Figure 4: Trajectory of rotor center (a), state variables (b) and onset of self excited vibrations during run up (c),

state variables during run down (d)

7.2 Steady-State-Stability
The steady state solutionsx0 of (30) are determined by solving the algebraic equations

0 = X(x0) (31)

for x0. The stability of these steady state solutionsx0 may be assessed by investigating the eigenvalues of the

JacobianJ = ∂X
∂x

∣

∣

∣

x=x0

. For a given angular velocity of the rotor, the stationary rotor position is asymptotically

stable, if all real parts of the eigenvalues ofJ are negative. Derived from this condition, Figure 5 (a) shows the
critical angular velocity of the rotorω∗

s , where the transition between stable and unstable stationary journal position
occurs. It might be observed that for an increasing parameter Γ (i.e. lower rotor mass) the stability threshold is
shifted to lower rotor speeds. Furthermore, for the chosen set of parameters, an increasing compliancyα leads to
a decrease of the threshold(Γ = 2, 4), while for a high rotor mass(Γ = 0.5) the threshold is shifted to higher
rotor speeds. Initially, the results, in terms of the dependency on the bearing compliancy on the stability threshold
are not as expected, compared with previous results, presented in [1]. Figure 5 (b) shows the stability threshold
over a different, but comparable nondimensional compliance parameterαW , which was obtained solely by another
structure model, a Winklerfoundation or in terms of air bearings so-called simple elastic foundation model, see [8].
In both cases the same model reduction was conducted and the same parameter values were used. Summarizing,
the physical difference between both models is the deformation of the structure in axial direction. In contrast to
the results obtained by the here presented model, the transition between stable and unstable stationary solutions
for stiff structures (lowα) and light rotors is shifted to higher values, the softer thebearing housing is. But,
comparing these effects with results found in literature, it turns out, that they are not inconsistent. For example
LeLez et al concluded by presenting numerical results of oneset of parameters based on a more elaborated bearing
structure model in [11], that structural deformation, without energy dissipation, strongly enhances the bearing
stability (steady state stability). Furthermore, Carpinoand Talmage in [3] concluded, based on FE simulations,
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Figure 5: (a) Stability threshold over bearing compliance, (b) [1]

that an significant increase in bearing load capacity can be achieved by axially varying subfoil stiffness and that an
optimal stiffness configuration exist. However, the stability of steady state solutions was not investigated, within
this publication. Eventually, the error in both cases, caused by using the same shape functions, although having
two different physical models is not yet comprehensively investigated.

7.3 Bifurcation Analysis
Using the nondimensional angular velocityω∗ as bifurcation parameter and studying the eigenvalues ofJ

with increasing rotor speed, a non-hyperbolic stationary point with two conjugate complex imaginary parts (and
vanishing real parts) occur atω∗

s . Thus, an Andronov-Hopf-Bifurcation(H) can be identified, where a periodic
solution

x
′

per = X(xper(τ)) (32)

bifurcates from a stationary solution, e.g. [14]. The period T is defined by the smallest non zero positive value,
where the state vectorx fulfills the condition

xper(τ) = xper(τ + T ). (33)

Within MatCont the boundary value problem (32) and (33) completed by the integral phase condition is solved
by an orthogonal collocation method, [5], [10]. To determine the stability of the periodic solution the (complex)
multipliers of the cycle, which are the eigenvalues of the monodromy matrix are investigated. In autonomous
systems one multiplier has always an absolute value of 1. Theremaining multipliers determine the stability of the
cycle. If all remaining multipliers have magnitude less than one, the periodic solution is (asymptotically) stable. If
one multiplier has a magnitude greater than one, the periodic solution is unstable.

Figure 6 (a) shows the stationary solutions and some limit cycles for the Cartesian coordinatesx∗P andy∗P of
the rotor’s centerP for a rigid bearing, as a function of the angular velocityω∗. Figure 7 (a) shows the relating
maximum eccentricityεP on the limit cycle or the stationary solution over the angular velocity. It is observable,
that the stationary solutions (starting on the left side of the latter diagram) are tending towards the center, with
increasing angular velocity, as already known form journalloci evaluations. Stationary solutions with angular
velocitiesω∗ > ω∗

s , are unstable. At the Andronov-Hopf-BifurcationH an unstable limit cycle is born, which
further characterises the Andronov-Hopf-Bifurcation as subcritical. Following the unstable branch, atFB1 a
fold bifurcation of cycles, also known as limit point of cycles, emerges. Thus, the limit cycle becomes stable.
Since the fold bifurcationFB1 is located at a lower angular velocity than the Andronov-Hopf-BifurcationH, an
angular velocity interval exists, with two stable solutions - a stationary and a periodic. Within that interval and
since no excitation exists, the initial state for a given angular velocity determines whether the system tends to
the stationary or periodic solution. This characteristic explains the difference in the rotor speed of upcoming or
decaying vibrations during run up and run down simulations.Within the investigated angular velocity interval no
other bifurcation occurs, but beyond that interval the topology of solutions changes.
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Figure 6: Stationary solutions and limit cycles - rigid bearing (a),compliant bearing (b)

Figure 7: Maximum eccentricity and whirl speed - rigid bearings (a),(c), and compliant bearings (b), (d)

For autonomous systems, the periodT of periodic solutions, relating to different angular velocities, is generally
neither known, nor constant. Figure 6 (b) showsγ

′

per, which can be interpreted as the averaged angular velocity
of the whirl motion of the rotor’s center, over the angular velocity of the rotating journalω∗. One might observe,
that the averaged angular velocity is roughly half the rotor’s angular velocityγ

′

per ≈
ω∗

2
, which could already been

established from Figure 4 (b), (d). Based on the similar and well known behavior of rotors in oil-lubricated fluid
film bearings, the presented characteristics of self excitation with approximately half rotor speed could be called
air-whirl.

When compliancy of the bearing housing (α 6= 0) is taken into account, some qualitative changes appear, see
Figure 6 (b) and Figure 7 (b), (d). A different angular velocity of the rotor, where the Andronov-Hopf-Bifurcation
(H) is located could already be investigated by the steady statestability analysis. Higher amplitudes of the whirl
motion, due to the deformations of the bearing, where observed during run up or run down simulations. But the
secondary fold bifurcationFB2 doesn’t exist for rigid bearings within the investigated angular velocity interval.
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Again, atFB2 two limit cycles, one stable and one unstable collide and disappear. Thus, for angular velocities
higher than the second fold bifurcation no stable solution exists, which could also be verified by time integration.
From Figure 7 (d) it could be concluded that the compliancy seems to have a minor influence on the averaged
angular velocity of the rotor’s whirl motionγ

′

per, which remains approximately at half rotor speed.

8 Summary
To identify the influence of the compliancy of air foil bearings on the rotor’s behavior, the simplest rigid rotor

model is coupled with a simple bearing model and solved simultaneously. The overall model is transformed in
non-dimensional form and the number of independent variables within the fluid equation is reduced by using a
Galerkin approach of Kantorovich type, aiming for a time efficient model. The derivatives w.r.t. the remaining
spatial circumferential coordinate are discretised by finite central differences and the overall model is written as
an autonomous first order system of coupled nonlinear ordinary differential equations. The stability thresholdω∗

s

for the stationary journal position (steady state solution) is investigated by varying the nondimensional compliance
parameter and the nondimensional parameter of the rotor mass. It is numerically shown, that the onset of whirl
motion is shifted to higher rotor speeds, the heavier the rotor is, but no general rule for the influence of the
compliancy on the stability threshold could be deduced. A comparison with results found in literature, showed the
sensitivity of the structure stiffness modelling on the rotor’s behavior. Besides steady state solutions, stable and
unstable periodic solutions exist. Stable periodic solutions represent the air whirl phenomena, with approximately
the half rotor’s angular velocity, independent the compliancy of the bearing. If a bearing compliancy is considered,
the rotor whirls with higher radii and furthermore another angular velocity threshold could be identified. Beyond
no stable solution exists.

Future work is addressed to more elaborate bearing models, in particular to modelling the structure stiffness
and to the validation of the fluid equation reduction. In further steps, more physical properties, like damping and
friction within the bearing structure should be included. Additionally, the investigated rotor models will become
more complex.
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