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Abstract

Arrigid rotor model and a reduced model of air foil bearingsiatroduced, coupled and solved simultaneously.
The rotor and bearing structure models are kept simple gwhé fluid model is reduced, aiming for time efficient
numerical simulations to investigate fundamental physinly the influence of bearing compliancy on the rotor
dynamics. A run up simulation is performed to show the ons$etturl motion. Angular velocity depending
stationary rotor positions and their stability are detewdli for a variation of the bearing compliance and the
nondimensional rotor mass parameter. The topology of isolsitis investigated by a bifurcation analysis, using
numerical path following methods.

1 Introduction

Oil-free bearing concepts are a promising approach fomoping high speed rotating - and turbomachinery.
Major advantages of air lubricated bearing systems, in @igpn to oil lubricated bearing systems are power loss
reduction, less maintenance costs, higher temperatustaiese and higher operating shaft speeds, [4], [7]. As an
improvement of self-acting (rigid) journal bearings, fo#@arings were evolved to minimize instability problems,
reduce manufacturing tolerances, and permit adaptatitmedfearing to changes in shaft diameter caused by cen-
trifugal force or temperature gradients, [6]. However, ac@l criterion for the choice of the bearing concept is
the dynamical behavior of the rotor during operation, whgkignificantly influenced by the bearings. In particu-
lar, the bearing forces could lead to self excited vibragioBonsequently, disruptive rotor vibrations could occur,
whereas a safe operation might not be possible. To this emapiehensive knowledge of bearing characteristics
and the interaction between bearings and rotor should lognézed to design an appropriate rotor bearing system.

In order to get more insights of the influences of air foil lbegs, in particular the compliancy of the bearing,
on the dynamical behavior of rotors, a coupled air foil beguriotor model is investigated. The rotor and bearing
model are kept simple, while the focus of this work is to uistind the crucial physics of whirl instabilities and
tendencies to influence their occurrence.

2 Rotor Model

The investigated rotor model is chosen as simple as poss$thkolely study the effects of the air bearings
on the dynamics of the rotor, without any excitation. Thusggal rotor of mas2M without static and dynamic
unbalance, horizontally and symmetrically mounted by tdentical bearings is assumed, see Figure 1. Due to
the symmetry the investigated problem will be restrictegléme motions, whered states the center of the rotor,
which coincides with the center of mass.

In order to describe the kinematics, a spaced fixed fraifled,,, e, , €!.) and a co-rotation frame (0, e}', e,
e'") wheree!, = e are introduced, cf. Figure 1(b). The origin of both frames is located on the connecting
line between the center points of the bearings, while the aiotation is collinear to the!' axes. The angular
velocity of the rotorw = we!, is considered to be given and consequently is no degreeesfdra. The orientation
of the co-rotating frame Il with respect to frame | is giventhg angley. The position ofP with respect taO
is given by the Cartesian coordinatesandyp with respect to system I. Likewise the position®fcan also be
defined by the eccentricity vecterr = ep e!', using polar coordinatesy (eccentricity) andy (attitude angle).
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(b)
Figure 1: Model rotor in symmetrical bearings (a), free body diagiatotor (b)

The conversion between these two descriptions are given by

yp
ep =1\/2% +y% tanvzg. (1)

Thus, the investigated rotor model has two degrees of freediherzp, yp Orep, .
Applying the forces given in the free body diagram (Figurb)},(Newton’s 2nd law yields the equations of
motion

Mip+ F, = Mg @)
MyP"’_Fy:O (3)

where F,, F, are the components of the bearing force of either bearing,in and e, —direction, which are
nonlinear functions depending on the state of the journdlisrangular velocity.

Fi:Fi(xpvypaiP7yPaw)7 Z:%y (4)

3 Bearing Model

Figure 2(a) shows a sketch of the bearing with the relevamingéry parameters and coordinates. The nominal
radius of the undeformed bearinghs L is the bearing length, andthe journal’s radius. The radial clearance of
the undeformed bearing tsy = R — r. The fluid film height is given by, — ¢, while i states the variation due to
the displacement of the rotor with respect to the undeforlbesting wall and; the wall deflection. Bothh and
q are functions of the circumferential coordinatestarting at the spatially fixeel,-axis, and an axial coordinate.
Since the maximum eccentricity max for air bearings is typically small compared to the geompasameters of
the bearingdepmax > R, r, L), the gap height with respect to the undeflected bearing wall can be expressed

h~ ho —epcos(p —7), 5)

assuming the co-centricity of journal axis and symmetns afithe bearing. Using addition theorems, the gap
height (5) can be expressed in terms of the Cartesian cadedin

h & hg — 2 p cos(p) — yp sin(p). (6)

Furthermore, by considering a small fluid height- ¢ compared to its length in circumferential direction, the
curvature of the fluid film can be neglected, cf. [13] f.i.. Geguently a plane description of the fluid film area
using Cartesian coordinates may be used, whgre= Ry is the circumferential and; is the axial position
(see Figure 2(b)).
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Figure 2: Bearing geometry and coordinates (a), unwrapped fluidepdena coordinates (b)

3.1 Fluid Modelling

Applying the common assumptions of fluid film lubrication dng [7], and assuming the fluid behaving as
an ideal gas, the gas pressprenay be described by the Reynolds equation for compressibtisf{cf. [13] for
instance)

—GRg =g <12 =) =0 (D)

0 {p(hq):‘f)p]+ 9 [p(huq)?’gﬂ

dup | p Owg] " 0z
inQp = {(zf,2¢) |z =0.21R, 2y = —L/2..L/2}, wherey is the viscosity of the fluid, respective air. This
partial differential equation is accompanied by the boupdanditions

L L

see Figure 2(b) and the initial conditipf ¢, 27, t = 0) = p,,. Once the pressure distribution has been determined
from (7) with (8) and I.C., the bearing forces acting on thisrean be determined by

L
2

2 2m %
F, = / / peos(p) dzy Rdp |, F, = / / psin(p) dzy Rdep. 9)
o J-L 0o J-%

3.2 Structure Modelling

The compliant structure underneath the fluid film is model asstess, rigid elements with one finite dimension
in axial (e!'") direction, supported by linear elastic springs (stif§uel without any couplings in circumferential
(e direction, see Figure 3(a) and (b) respectively. This rhixla further reduction of a 1D model presented
and validated by San Andres and Kim in [12], neglecting thedieg stiffness of the top foil in circumferential
direction and the finite gap between the contact points diihend elastic support (bumps). On the other hand, the
presented model has a slight enhancement compared to thke gfastic foundation model (Winklerfoundation)
presented by Heshmat in [8], with the major advantage thagredcitiesep > 1 are physically possible, since a
deflection of the structure at the axial ends & i%), where the fluid pressure is equal the ambient pressure, see
8, is feasible. The deflection of a single axial element iggily

kq=—(P — Lpo), (10)

wherep, is the ambient pressure and

ﬁ=/_ p dzf (11)
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Figure 3: 3D view of structure model (a), single rigid element of begistructure (b)

the axial averaged pressure.

4 Nondimensional Equations
4.1 Fluid and Structure
Using the transformations

xp
ho’

AN
Il
L
I
|
m
|
|
&
g%

yp =22 =L r-1q (12)
0

for the independent and dependent variables, the fluid filighethe deflection of the structure and the angular
velocity of the rotor are consequently transformed by

(13)
Substituting (12) and (13) in (7) leads to

0

op* op*
v *px _ _x\3TL 3
o lp (h* —q") 95

az}

8 % /7% *
+“2az* lp (h* —q*)

! ] —o' s [p*(h* - Q*)} 20 [p*(h* - q*)] = 0(14)

dp or

onQp« = {(gﬁ, Z5) | =0.2m 27 = —1/2..1/2}, with two geometric similarity parametets ~ and the char-
acteristic angular velocity and inverse time scale

ho R O_ pov®  pohd

VER o T 6 6uR? (15)
The scaled gap functiol* (5), (6) results as
h*=1—epcos(p —v) =1—apcos(p) — ypsin(p). (16)
Applying the transformations (12) to the averaged presgliireleads to
5= L with p= /% p*dz* (17)
Po ~1

while the nondimensional structure equation (10) is given b

¢ =a(l -7 (18)
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with the definition of a compliance parameters

pol  po
= = 19
T %ho  kun (19)
A rigid bearing model is obtained far = 0.
4.2 Rotor
Using the transformations in (12), the rotor’s equationmofion (2), (3) are reformulated as
zy +TF =2 (20)
vp +TF; =0, (21)

where a prim¢g.)’ = %(.) denotes the derivate with respect to the nondimensionaltinin (20) and (21), two
additional nondimensional parameters

o_ PoRL _ 36p°R°L
7Mth277 pOth ’

g 36gu*R*
T heQ2 T T pER3

[1]

(22)

are introduced. The parametéis a characteristic force ratio of bearing and inertia fand= is a characteristic
force ratio of load and inertia force.

5 Model Dimension Reduction

With the objective of deriving a fast coupled nonlinear rdiearing model, the dimension of the fluid equation
(14) is reduced by using a Galerkin-approach of Kantorotygie [9] analog to [1]. Motivated by full numerical
solutions using FD discretisation the unknown pressuretfonp*(, z, 7) Is assumed as a product

n
Palp 25 ) = ) Bai(2])Pii(p,7) + 1, (23)
i=1

of time-invariant axial shape function; only depending on the axial coordinatg and circumferential func-
tions p},, which depend on the nondimensional tim&nd the circumferential coordinaie Here, the index:
indicates that an approximatigri ~ p* is determined. Assuming a one term parabolic axial shapetifum the
approximated solution takes the form

* * 1 * A
pa(@? vaT) = (Z - Zf2)pal((p77—) + 1. (24)

The approximated averaged pressure (17) for the assumeslpedunction (24) is given by

* 1 A~k
ﬁal = gpal(goa T) +1 (25)

Substituting (18) in (14) and furthermore (24) and (25) itite resulting Reynolds equation, while demanding
that the averaged weighted residuum vanishes eventualglsyi- after evaluation of integrals and appropriate
rearranging — a reduced PDE and B.C. of the form

aﬁ: ~x! Ak 8 Ak 82 Ak * * *! * *

67'1 = Pa1 :f (pala 6¢pa178<p2pa17vayP7xPayPaw 75705) (26)
Ak [

B.C.: pal(go = 0) = pal(so = 271—) Vtv (27)

onQpsred = {() | ¢ = 0..27}.
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Table 1: Parameter values

Non-dim. par.  Definition Value Non-dim. par.  Definition  Valu
h -3 36u°R°L
0 ho 10 r i 0.5, 0.75, 1, 2, 4
2 p4
5 2 i = st 0572
a o 0..2

6 Discretisation and Parameters

For numerical approximations of (26), finite central difeces (FD) of derivatives with respect to the remain-
ing spatial coordinate

EI T 0 B = W B
890 al QAQD ) 8@2 al Acp2 .

(28)

are used. Thus, the reduced domain is divided into a unifeithad 1 collocation points}, i = 1..m. Together
with the mechanical state variables of the rotor ceftea state-space-matrix

x = [Tp,yp,Tp,Yp | B1oe e By - D] (29)

of lengthm + 4 is defined. Using the state-space-maitia coupled first order system of nonlinear ODE can be
defined

r = X(2(1)), (30)

including the rotor equations (20) and (21) and the disseetiluid equations (26). The physical model presented
here is quite similar to the model presented in [2] by Bonatild Pham, whereas the (linear) damping characteristic
of the structure, as well as the static unbalance and acggydihe excitation is additionally neglected. In their
contribution, the nonlinear fluid equation is also reducgalGalerkin-approach. But in [2] Bonello and Pham
are using different and more trial functions in axial difest and furthermore trial functions in circumferential
direction, too.

The system (30) is autonomous, since no explicit time degecel (e.g. harmonic excitation by unbalance) is
existing. Time-integration of (30) is solved efficiently imeans of standard solvers for initial value ODE-problems,
using Matlab. The subsequent bifurcation analysis is cotadl) using the continuation toolbox MatCont, [5].
For the following investigations the ambient pressure igseim agp, = 10° [Nm~2], the viscosity of air as
p=1.8-10~° [Nsm2]. The values of the nondimensional parameters are listedhieT.. Based on the chosen
parameters, the time and angular velocity scale (15) cantijatively be determined &3 = 9.26 - 102 [s71].

7 Numerical Analysis - Results
7.1 Time Integration - Run Up
To show the applicability as well as the numerical efficienfyhe presented model a run up simulation of
the rotor is performed. Thus, the rotor speed is linearlydased between,y, = 5000rpm (w* = 0.57) and
nhigh = 12500rpm (w* = 1.41), within an interval of30s. Figure 4, shows exemplarily some results of the state
variablese}, y3 of the rotor's center”, for the parameters = 0.5,I" = 2. The simulation time, performed on
an i5 CPU with 4GB ram wa850s. It is observable, tha? remains at an almost fixed positi¢n, ~ 5 ~ 0)
at low speeds. After passing a certain threshgldself excited vibrations occur and the rotor starts to whith
fast increasing radii and approximately half the anguldwaity of the rotor(y/ ~ “’7*), see Figure 4 (b), ().
Motivating a bifurcation analysis, run down simulationgiwihe same parameters and within the same time
interval, solely switching start - and end rotor speed aréopmed. The state variables of the rotor are shown in
Figure 4 (d). One obviously observes the difference in rep@ed or time interval, where the self excited vibrations
during run up occur and where the vibrations of the rotormyrun down vanishes.
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Figure 4. Trajectory of rotor center (a), state variables (b) ancebn$ self excited vibrations during run up (c),

state variables during run down (d)

7.2 Steady-State-Stability
The steady state solutiong of (30) are determined by solving the algebraic equations

for 3. The stability of these steady state solutiansmay be assessed by investigating the eigenvalues of the
JacobianJ = %—f . For a given angular velocity of the rotor, the stationarprgosition is asymptotically

stable, if all real pcgrtaéoof the eigenvalues.bfare negative. Derived from this condition, Figure 5 (a) shohe
critical angular velocity of the rotar?, where the transition between stable and unstable stagigmanal position
occurs. It might be observed that for an increasing paranie{ee. lower rotor mass) the stability threshold is
shifted to lower rotor speeds. Furthermore, for the chostofgparameters, an increasing complianckeads to

a decrease of the threshqlll = 2,4), while for a high rotor mas§l’ = 0.5) the threshold is shifted to higher
rotor speeds. Initially, the results, in terms of the de@gt on the bearing compliancy on the stability threshold
are not as expected, compared with previous results, gegsén[1]. Figure 5 (b) shows the stability threshold
over a different, but comparable nondimensional compégrarametety,, which was obtained solely by another
structure model, a Winklerfoundation or in terms of air liegs so-called simple elastic foundation model, see [8].
In both cases the same model reduction was conducted andriemarameter values were used. Summarizing,
the physical difference between both models is the defoomatf the structure in axial direction. In contrast to
the results obtained by the here presented model, the ticanbietween stable and unstable stationary solutions
for stiff structures (lowa) and light rotors is shifted to higher values, the softer blearing housing is. But,
comparing these effects with results found in literaturéuins out, that they are not inconsistent. For example
LeLez et al concluded by presenting numerical results ofsetef parameters based on a more elaborated bearing
structure model in [11], that structural deformation, witlh energy dissipation, strongly enhances the bearing
stability (steady state stability). Furthermore, Carpamal Talmage in [3] concluded, based on FE simulations,
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Figure 5: (a) Stability threshold over bearing compliance, (b) [1]

that an significant increase in bearing load capacity carchigeed by axially varying subfoil stiffness and that an
optimal stiffness configuration exist. However, the siapibf steady state solutions was not investigated, within
this publication. Eventually, the error in both cases, edusy using the same shape functions, although having
two different physical models is not yet comprehensivelestigated.

7.3 Bifurcation Analysis

Using the nondimensional angular velocity as bifurcation parameter and studying the eigenvalue$ of
with increasing rotor speed, a non-hyperbolic stationariptpwith two conjugate complex imaginary parts (and
vanishing real parts) occur ati. Thus, an Andronov-Hopf-Bifurcatioff) can be identified, where a periodic
solution

Tper = X (Tper (7)) (32)

bifurcates from a stationary solution, e.g. [14]. The pefidis defined by the smallest non zero positive value,
where the state vectar fulfills the condition

Tper(T) = Tper (T 4+ T). (33)

Within MatCont the boundary value problem (32) and (33) clatgul by the integral phase condition is solved
by an orthogonal collocation method, [5], [10]. To deterenthe stability of the periodic solution the (complex)
multipliers of the cycle, which are the eigenvalues of thenodromy matrix are investigated. In autonomous
systems one multiplier has always an absolute value of 1rdin@ining multipliers determine the stability of the
cycle. If all remaining multipliers have magnitude lesstlame, the periodic solution is (asymptotically) stable. If
one multiplier has a magnitude greater than one, the pergmlution is unstable.

Figure 6 (a) shows the stationary solutions and some linulesyfor the Cartesian coordinates andy; of
the rotor’s centelP for a rigid bearing, as a function of the angular velocity. Figure 7 (a) shows the relating
maximum eccentricity » on the limit cycle or the stationary solution over the anguiocity. It is observable,
that the stationary solutions (starting on the left sidehef fatter diagram) are tending towards the center, with
increasing angular velocity, as already known form jouroal evaluations. Stationary solutions with angular
velocitiesw* > w, are unstable. At the Andronov-Hopf-Bifurcatidih an unstable limit cycle is born, which
further characterises the Andronov-Hopf-Bifurcation abgitical. Following the unstable branch, AB; a
fold bifurcation of cycles, also known as limit point of cgsl emerges. Thus, the limit cycle becomes stable.
Since the fold bifurcatiorf' B; is located at a lower angular velocity than the Andronov-Bifurcation H, an
angular velocity interval exists, with two stable soluona stationary and a periodic. Within that interval and
since no excitation exists, the initial state for a givenwdagvelocity determines whether the system tends to
the stationary or periodic solution. This characterisiplains the difference in the rotor speed of upcoming or
decaying vibrations during run up and run down simulatidi&hin the investigated angular velocity interval no
other bifurcation occurs, but beyond that interval the togg of solutions changes.
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Figure 7: Maximum eccentricity and whirl speed - rigid bearings (&), and compliant bearings (b), (d)

For autonomous systems, the periodf periodic solutions, relating to different angular vetass, is generally
neither known, nor constant. Figure 6 (b) shoy)';g,r, which can be interpreted as the averaged angular velocity
of the whirl motion of the rotor’s center, over the angulaloeity of the rotating journal*. One might observe,
that the averaged angular velocity is roughly half the retangular velocityy;er ~ “7 which could already been
established from Figure 4 (b), (d). Based on the similar aalil known behavior of rotors in oil-lubricated fluid
film bearings, the presented characteristics of self exmitavith approximately half rotor speed could be called
air-whirl.

When compliancy of the bearing housing £ 0) is taken into account, some qualitative changes appear, se
Figure 6 (b) and Figure 7 (b), (d). A different angular vetgaf the rotor, where the Andronov-Hopf-Bifurcation
(H) is located could already be investigated by the steady stabdlity analysis. Higher amplitudes of the whirl
motion, due to the deformations of the bearing, where oleseduring run up or run down simulations. But the
secondary fold bifurcatiod’ By doesn’t exist for rigid bearings within the investigatedyalar velocity interval.
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Again, atF B, two limit cycles, one stable and one unstable collide andptisar. Thus, for angular velocities
higher than the second fold bifurcation no stable solutiiats, which could also be verified by time integration.
From Figure 7 (d) it could be concluded that the compliangnseto have a minor influence on the averaged
angular velocity of the rotor’s whirl motiom;}er, which remains approximately at half rotor speed.

8 Summary

To identify the influence of the compliancy of air foil beagson the rotor’'s behavior, the simplest rigid rotor
model is coupled with a simple bearing model and solved samebusly. The overall model is transformed in
non-dimensional form and the number of independent vaggahlithin the fluid equation is reduced by using a
Galerkin approach of Kantorovich type, aiming for a timeaifint model. The derivatives w.r.t. the remaining
spatial circumferential coordinate are discretised bytdioentral differences and the overall model is written as
an autonomous first order system of coupled nonlinear orglidiéferential equations. The stability threshold
for the stationary journal position (steady state solytisinvestigated by varying the nondimensional compliance
parameter and the nondimensional parameter of the rotos.mias numerically shown, that the onset of whirl
motion is shifted to higher rotor speeds, the heavier therrist but no general rule for the influence of the
compliancy on the stability threshold could be deduced. igarison with results found in literature, showed the
sensitivity of the structure stiffness modelling on theorst behavior. Besides steady state solutions, stable and
unstable periodic solutions exist. Stable periodic sohgirepresent the air whirl phenomena, with approximately
the half rotor’'s angular velocity, independent the comqiaof the bearing. If a bearing compliancy is considered,
the rotor whirls with higher radii and furthermore anothegalar velocity threshold could be identified. Beyond
no stable solution exists.

Future work is addressed to more elaborate bearing modepgrticular to modelling the structure stiffness
and to the validation of the fluid equation reduction. In ffiert steps, more physical properties, like damping and
friction within the bearing structure should be includeddditionally, the investigated rotor models will become
more complex.
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